AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Investigation of cubic Pt alloys for ammonia oxidation reaction

Yat Tung ChanKumar SiddharthMinhua Shao( )
Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Show Author Information

Graphical Abstract

Abstract

As a promising fuel candidate, ammonia has been successfully used as anode feed in alkaline fuel cells. However, current technology in catalysts for ammonia electro-oxidation reaction (AOR) with respect to both cost and performance is inadequate to ensure large scale commercial application of direct ammonia fuel cells. Recent studies found that alloying Pt with different transition metals and controlling the morphology of catalysts can improve the AOR activity, and thus potentially can solve the cost issue. Herein, (100)-terminated Pt-M nanocubes (M = 3d-transition metals Fe, Co, Ni, Zn) are synthesized via wet-chemistry method and their catalytic activities toward AOR are evaluated. The addition of Fe, Co, Ni and Zn elements can enhance the AOR activity due to decrease in oxophilicity of platinum and bifunctional mechanism. Pt-Zn exhibits the maximum mass activity and specific activity with values of 0.41 A/mgPt and 1.69 mA/cm2 that are 1.6 and 1.8 times higher than Pt nanocubes, respectively. Pt-Fe, Pt-Co and Pt-Ni nanocubes also illustrate higher mass and specific activities compared to Pt nanocubes.

Electronic Supplementary Material

Download File(s)
12274_2020_2712_MOESM1_ESM.pdf (3 MB)

References

[1]
Strickland, G. Hydrogen derived from ammonia: Small-scale costs. Int. J. Hydrogen Energy 1984, 9, 759-766.
[2]
Muthuvel, M.; Botte, G. G. Trends in ammonia electrolysis. In Modern Aspects of Electrochemistry; White, R. E., Ed.; Springer: New York, 2009; pp 207-245.
[3]
Vidal-Iglesias, F. J.; Solla-Gullón, J.; Montiel, V.; Feliu, J. M.; Aldaz, A. Screening of electrocatalysts for direct ammonia fuel cell: Ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles. J. Power Sources 2007, 171, 448-456.
[4]
Endo, K.; Nakamura, K.; Katayama, Y.; Miura, T. Pt-Me (Me = Ir, Ru, Ni) binary alloys as an ammonia oxidation anode. Electrochim. Acta 2004, 49, 2503-2509.
[5]
Endo, K.; Katayama, Y.; Miura, T. Pt-Ir and Pt-Cu binary alloys as the electrocatalyst. Electrochim. Acta 2004, 49, 1635-1638.
[6]
Allagui, A.; Oudah, M.; Tuaev, X.; Ntais, S.; Almomani, F.; Baranova, E. A. Ammonia electro-oxidation on alloyed PtIr nanoparticles of well-defined size. Int. J. Hydrogen Energy 2013, 38, 2455-2463.
[7]
Moran, E.; Cattaneo, C.; Mishima, C.; López De Mishima, B. A.; Silvetti, S. P.; Rodriguez, J. L.; Pastor, E. Ammonia oxidation on electrodeposited Pt-Ir alloys. J. Solid State Electrochem. 2008, 12, 583-589.
[8]
Vitse, F.; Cooper, M.; Botte, G. G. On the use of ammonia electrolysis for hydrogen production. J. Power Sources 2005, 142, 18-26.
[9]
Bonnin, E. P.; Biddinger, E. J.; Botte, G. G. Effect of catalyst on electrolysis of ammonia effluents. J. Power Sources 2008, 182, 284-290.
[10]
Silva, J. C. M.; Da Silva, S. G.; De Souza, R. F. B.; Buzzo, G. S.; Spinacé, E. V.; Neto, A. O.; Assumpção, M. H. M. T. PtAu/C electrocatalysts as anodes for direct ammonia fuel cell. Appl. Catal. A 2015, 490, 133-138.
[11]
Kang, Y. M.; Wang, W.; Li, J. M.; Hua, C. Y.; Xue, S. Y.; Lei, Z. Q. High performance PtxEu alloys as effective electrocatalysts for ammonia electro-oxidation. Int. J. Hydrogen Energy 2017, 42, 18959-18967.
[12]
Liu, J.; Fan, X. Y.; Liu, X. R.; Song, Z. S.; Deng, Y. D.; Han, X. P.; Hu, W. B.; Zhong, C. Synthesis of cubic-shaped Pt particles with (100) preferential orientation by a quick, one-step and clean electrochemical method. ACS Appl. Mater. Interfaces 2017, 9, 18856- 18864.
[13]
Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Shape-enhanced ammonia electro-oxidation property of a cubic platinum nanocrystal catalyst prepared by surfactant-free synthesis. J. Mater. Chem. A 2013, 1, 14402-14408.
[14]
Zhong, C.; Liu, J.; Ni, Z. Y.; Deng, Y. D.; Chen, B.; Hu, W. B. Shape-controlled synthesis of Pt-Ir nanocubes with preferential (100) orientation and their unusual enhanced electrocatalytic activities. Sci. China Mater. 2014, 57, 13-25.
[15]
Silva, J. C. M.; Assumpção, M. H. M. T.; Hammer, P.; Neto, A. O.; Spinacé, E. V.; Baranova, E. A. Iridium-rhodium nanoparticles for ammonia oxidation: Electrochemical and fuel cell studies. ChemElectroChem 2017, 4, 1101-1107.
[16]
Kim, K. W.; Lee, E. H.; Kim, J. S.; Shin, K. H.; Kim, K. H. Study on the electro-activity and non-stochiometry of a Ru-based mixed oxide electrode. Electrochim. Acta 2001, 46, 915-921.
[17]
Kim, K. W.; Kim, Y. J.; Kim, I. T.; Park, G. I.; Lee, E. H. The electrolytic decomposition mechanism of ammonia to nitrogen at an IrO2 anode. Electrochim. Acta 2005, 50, 4356-4364.
[18]
Kim, K. W.; Kim, I. T.; Park, G. I.; Lee, E. H. Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function. J. Appl. Electrochem. 2006, 36, 1415-1426.
[19]
Kapałka, A.; Fierro, S.; Frontistis, Z.; Katsaounis, A.; Neodo, S.; Frey, O.; De Rooij, N.; Udert, K. M.; Comninellis, C. Electrochemical oxidation of ammonia (NH4+/NH3) on thermally and electrochemically prepared IrO2 electrodes. Electrochim. Acta 2011, 56, 1361-1365.
[20]
Michels, N. L.; Kapałka, A.; Abd-El-Latif, A. A.; Baltruschat, H.; Comninellis. C. Enhanced ammonia oxidation on BDD induced by inhibition of oxygen evolution reaction. Electrochem. Commun. 2010, 12, 1199-1202.
[21]
Kapałka, A.; Cally, A.; Neodo, S.; Comninellis, C.; Wächter, M.; Udert. K. M. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode. Electrochem. Commun. 2010, 12, 18-21.
[22]
Kapałka, A.; Joss, L.; Anglada, Á.; Comninellis, C.; Udert, K. M. Direct and mediated electrochemical oxidation of ammonia on boron-doped diamond electrode. Electrochem. Commun. 2010, 12, 1714-1717.
[23]
Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134-9141.
[24]
Okanishi, T.; Katayama, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. SnO2-modified Pt electrocatalysts for ammonia-fueled anion exchange membrane fuel cells. Electrochim. Acta 2015, 173, 364-369.
[25]
Morterra, C.; Bolis, V.; Magnacca, G. Surface characterization of modified aluminas. Part 4.—Surface hydration and Lewis acidity of CeO2-Al2O3 systems. J. Chem. Soc., Faraday Trans. 1996, 92, 1991-1999.
[26]
Sharma, S.; Pollet, B. G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sources 2012, 208, 96-119.
[27]
Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Enhanced supply of hydroxyl species in CeO2-modified platinum catalyst studied by in situ ATR-FTIR spectroscopy. ACS Catal. 2016, 6, 2026-2034.
[28]
Herron, J. A.; Ferrin, P.; Mavrikakis, M. Electrocatalytic oxidation of ammonia on transition-metal surfaces: A first-principles study. J. Phys. Chem. C 2015, 119, 14692-14701.
[29]
Jiang, J. H. Promotion of PtIr and Pt catalytic activity towards ammonia electrooxidation through the modification of Zn. Electrochem. Commun. 2017, 75, 52-55.
[30]
Kang, Y. M.; Wang, W.; Li, J. M.; Li, Q. L.; Liu, S. J.; Lei, Z. Q. A highly efficient Pt-NiO/C electrocatalyst for ammonia electro-oxidation. J. Electrochem. Soc. 2017, 164, F958-F965.
[31]
Rosca, V.; Koper, M. T. M. Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys. Chem. Chem. Phys. 2006, 8, 2513-2524.
[32]
Novell-Leruth, G.; Valcárcel, A.; Clotet, A.; Ricart, J. M.; Pérez-Ramírez, J. DFT characterization of adsorbed NHx species on Pt(100) and Pt(111) surfaces. J. Phys. Chem. B 2005, 109, 18061-18069.
[33]
Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543-18547.
[34]
Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642-5647.
[35]
Vidal-Iglesias, F. J.; Montiel, V.; Solla-Gullón, J. Influence of the metal loading on the electrocatalytic activity of carbon-supported (100) Pt nanoparticles. J. Solid State Chem. 2016, 20, 1107-1118.
[36]
Cooper, M.; Botte, G. G. Hydrogen production from the electro-oxidation of ammonia catalyzed by platinum and rhodium on raney nickel substrate. J. Electrochem. Soc. 2006, 153, A1894-A1901.
[37]
Zhong, C.; Hu, W. B.; Cheng, Y. F. On the essential role of current density in electrocatalytic activity of the electrodeposited platinum for oxidation of ammonia. J. Power Sources 2011, 196, 8064-8072.
[38]
Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385-3391.
[39]
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610.
[40]
Li, D. G.; Wang, C.; Tripkovic, D.; Sun, S. H.; Markovic, N. M.; Stamenkovic, V. R. Surfactant removal for colloidal nanoparticles from solution synthesis: The effect on catalytic performance. ACS Catal. 2012, 2, 1358-1362.
[41]
Choi, S. I.; Xie, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X. H. et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420-3425.
[42]
Lee, Y. H.; Lee, G.; Shim, J. H.; Hwang, S.; Kwak, J.; Lee, K.; Song, H.; Park, J. T. Monodisperse PtRu nanoalloy on carbon as a high-performance DMFC catalyst. Chem. Mater. 2006, 18, 4209-4211.
[43]
Lee, G.; Shim, J. H.; Kang, H.; Nam, K. M.; Song, H.; Park, J. T. Monodisperse Pt and PtRu/C60 hybrid nanoparticles for fuel cell anode catalysts. Chem. Commun. 2009, 5036-5038.
[44]
Liu, Z. F.; Shamsuzzoha, M.; Ada, E. T.; Reichert, W. M.; Nikles, D. E. Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J. Power Sources 2007, 164, 472-480.
[45]
Arán-Ais, R. M.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 2015, 27, 945-956.
[46]
Vidal-Iglesias, F. J.; Arán-Ais, R. M.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal. 2012, 2, 901-910.
[47]
Li, Z. F.; Wang, Y. X.; Botte, G. G. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts. Electrochim. Acta 2017, 228, 351-360.
[48]
Katsounaros, I.; Chen, T.; Gewirth, A. A.; Markovic, N. M.; Koper, M. T. Evidence for decoupled electron and proton transfer in the electrochemical oxidation of ammonia on Pt(100). J. Phys. Chem. Lett. 2016, 7, 387-392.
[49]
Siddharth, K.; Hong, Y.; Choi, S. I.; Shao, M. Binary and ternary nanocubes as electrocatalysts for ammonia electrooxidation reaction. In Proceedings of Meeting Abstracts, 2019, p 1689.
[50]
Vidal-Iglesias, F. J.; Garcı́a-Aráez, N.; Montiel, V.; Feliu, J. M.; Aldaz, A. Selective electrocatalysis of ammonia oxidation on Pt(100) sites in alkaline medium. Electrochem. Commun. 2003, 5, 22-26.
[51]
Zhu, S. Q.; Hu, X. M.; Zhang, L. L.; Shao, M. H. Impacts of perchloric acid, nafion, and alkali metal ions on oxygen reduction reaction kinetics in acidic and alkaline solutions. J. Phys. Chem. C 2016, 120, 27452-27461.
[52]
Peng, W.; Xiao, L.; Huang, B.; Zhuang, L.; Lu, J. T. Inhibition effect of surface oxygenated species on ammonia oxidation reaction. J. Phys. Chem. C 2011, 115, 23050-23056.
[53]
Vidal-Iglesias, F. J.; Solla-Gullón, J.; Feliu, J. M.; Baltruschat, H.; Aldaz, A. DEMS study of ammonia oxidation on platinum basal planes. J. Electroanal. Chem. 2006, 588, 331-338.
[54]
Finkelstein, D. A.; Bertin, E.; Garbarino, S.; Guay, D. Mechanistic similarity in catalytic N2 production from NH3 and NO2- at Pt(100) thin films: Toward a universal catalytic pathway for simple N-containing species, and its application to in situ removal of NH3 poisons. J. Phys. Chem. C 2015, 119, 9860-9878.
[55]
Lomocso, T. L.; Baranova, E. A. Electrochemical oxidation of ammonia on carbon-supported bi-metallic PtM (M = Ir, Pd, SnOx) nanoparticles. Electrochim. Acta 2011, 56, 8551-8558.
[56]
Silva, J. C. M.; Piasentin, R. M.; Spinacé, E. V.; Neto, A. O.; Baranov, E. A. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation. Mater. Chem. Phys. 2016, 180, 97-103.
[57]
Zhang, L.; Lu, D. K.; Chen, Y.; Tang, Y. W.; Lu, T. H. Facile synthesis of Pd-Co-P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. J. Mater. Chem. A 2014, 2, 1252-1256.
[58]
Fu, G. T.; Wu, K.; Lin, J.; Tang, Y. W.; Chen, Y.; Zhou, Y. M.; Lu, T. H. One-pot water-based synthesis of Pt-Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 2013, 117, 9826-9834.
[59]
Ye, F.; Liu, H.; Hu, W. W.; Zhong, J. Y.; Chen, Y. Y.; Cao, H. B.; Yang, J. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction. Dalton Trans. 2012, 41, 2898-2903.
[60]
Hsieh, C. T.; Hung, W. M.; Chen, W. Y.; Lin, J. Y. Microwave-assisted polyol synthesis of Pt-Zn electrocatalysts on carbon nanotube electrodes for methanol oxidation. Int. J. Hydrogen Energy 2011, 36, 2765-2772.
[61]
Liu, F.; Lee, J. Y.; Zhou, W. J. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation. Small 2006, 2, 121-128.
[62]
Hsieh, C. T.; Lin, J. Y. Fabrication of bimetallic Pt-M (M = Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources 2009, 188, 347-352.
Nano Research
Pages 1920-1927
Cite this article:
Chan YT, Siddharth K, Shao M. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Research, 2020, 13(7): 1920-1927. https://doi.org/10.1007/s12274-020-2712-1
Topics:
Part of a topical collection:

880

Views

64

Crossref

N/A

Web of Science

64

Scopus

8

CSCD

Altmetrics

Received: 10 December 2019
Revised: 13 January 2020
Accepted: 11 February 2020
Published: 29 February 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return