AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structure regulated catalytic performance of gold nanocluster- MOF nanocomposites

Yanfei Zhu1,2,§Xueying Qiu1,4,§Shenlong Zhao1,3Jun Guo1Xiaofei Zhang1Wenshi Zhao1,2Yanan Shi1,2Zhiyong Tang1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

§ Yanfei Zhu and Xueying Qiu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Atomically precise gold (Au) nanoclusters (NCs) as visible light photosensitizers supported on the substrate for photoredox catalysis have attracted considerable attentions. However, efficient control of their photocatalytic activity and long-term stability is still challenging. Herein, we report a coordination-assisted self-assembly strategy in combination with electrostatic interaction to sandwich Au25(Capt)18 (abbreviated as Au25, Capt = captopril) NCs between an inner core and an outer shell made of UiO-66, denoted as UiO-66@Au25@UiO-66. Notably, the sandwich-like nanocomposite displays significantly enhanced catalytic activity along with an excellent stability when used in the selective photocatalytic aerobic oxidation of sulfide to sulfoxide. As comparison, Au25 NCs simply located at the outer surface or insider matrix of UiO-66 (short as Au25/UiO-66 and Au25@UiO-66) show poor stability and low conversion, respectively. This structure regulated difference in the catalytic performances of three nanocomposites is assigned to the varied distribution of active sites (Au NCs) in metal-organic frameworks (MOFs). This work offers the opportunity for application of nanoclusters in catalysis, energy conversion and even biology.

Electronic Supplementary Material

Download File(s)
12274_2020_2715_MOESM1_ESM.pdf (5.3 MB)

References

[1]
Du, X. S.; Jin, R. C. Atomically precise metal nanoclusters for catalysis. ACS Nano 2019, 13, 7383-7387.
[2]
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526-622.
[3]
Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749-1758.
[4]
Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.
[5]
Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/Cdse nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.
[6]
Zhang, Q. F.; Chen, X. N.; Wang, L. S. Toward solution syntheses of the tetrahedral Au20 pyramid and atomically precise gold nanoclusters with uncoordinated sites. Acc. Chem. Res. 2018, 51, 2159-2168.
[7]
Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 2018, 51, 2774-2783.
[8]
Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.
[9]
Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346-10413.
[10]
Ye, H. H.; Wang, Q. X.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y. Z.; Sun, Y. G.; Xia, X. H. Ru nanoframes with an FCC structure and enhanced catalytic properties. Nano Lett. 2016, 16, 2812-2817.
[11]
Liu, S. Q.; Xu, Y. J. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis. Sci. Rep. 2016, 6, 22742.
[12]
Weng, B.; Lu, K. Q.; Tang, Z. C.; Chen, H. M.; Xu, Y. J. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nat. Commun. 2018, 9, 1543.
[13]
Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276-279.
[14]
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2042.
[15]
Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43-68.
[16]
Chen, Y. Z.; Wang, Z. U.; Wang, H. W.; Lu, J. L.; Yu, S. H.; Jiang, H. L. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: The roles of photothermal effect and Pt electronic state. J. Am. Chem. Soc. 2017, 139, 2035-2044.
[17]
Luo, Y. C.; Fan, S. Y.; Yu, W. Q.; Wu, Z. L.; Cullen, D. A.; Liang, C. L.; Shi, J. Y.; Su, C. Y. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: A facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 2018, 30, 1704576.
[18]
Sun, L. L.; Yun, Y. P.; Sheng, H. T.; Du, Y. X.; Ding, Y. M.; Wu, P.; Li, P.; Zhu, M. Z. Rational encapsulation of atomically precise nanoclusters into metal-organic frameworks by electrostatic attraction for CO2 conversion. J. Mater. Chem. A 2018, 6, 15371-15376.
[19]
Liang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.
[20]
Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76-80.
[21]
Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774-4808.
[22]
Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Beyond post-synthesis modification: Evolution of metal-organic frameworks via building block replacement. Chem. Soc. Rev. 2014, 43, 5896-5912.
[23]
Aijaz, A.; Akita, T.; Tsumori, N.; Xu, Q. Metal-organic framework-immobilized polyhedral metal nanocrystals: Reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. J. Am. Chem. Soc. 2013, 135, 16356-16359.
[24]
Zhang, Z. C.; Chen, Y. F.; Xu, X. B.; Zhang, J. C.; Xiang, G. L.; He, W.; Wang, X. Well-defined metal-organic framework hollow nanocages. Angew. Chem., Int. Ed. 2014, 53, 429-433.
[25]
Kumar, S.; Jin, R. C. Water-soluble Au25(Capt)18 nanoclusters: Synthesis, thermal stability, and optical properties. Nanoscale 2012, 4, 4222-4227.
[26]
Waszkielewicz, M.; Olesiak-Banska, J.; Comby-Zerbino, C.; Bertorelle, F.; Dagany, X.; Bansal, A. K.; Sajjad, M. T.; Samuel, I. D. W.; Sanader, Z.; Rozycka, M. et al. pH-induced transformation of ligated Au25 to brighter Au23 nanoclusters. Nanoscale 2018, 10, 11335-11341.
[27]
DeStefano, M. R.; Islamoglu, T.; Garibay, S. J.; Hupp, J. T.; Farha, O. K. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chem. Mater. 2017, 29, 1357-1361.
[28]
Carreno, M. C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev. 1995, 95, 1717-1760.
[29]
Zen, J. M.; Liou, S. L.; Kumar, A. S.; Hsia, M. S. An efficient and selective photocatalytic system for the oxidation of sulfides to sulfoxides. Angew. Chem., Int. Ed. 2003, 42, 577-579.
[30]
Baciocchi, E.; del Giacco, T.; Elisei, F.; Gerini, M. F.; Guerra, M.; Lapi, A.; Liberali, P. Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations. J. Am. Chem. Soc. 2003, 125, 16444-16454.
[31]
Surendra, K.; Krishnaveni, N. S.; Kumar, V. P.; Sridhar, R.; Rao, K. R. Selective and efficient oxidation of sulfides to sulfoxides with N-bromosuccinimide in the presence of β-cyclodextrin in water. Tetrahed. Lett. 2005, 46, 4581-4583.
[32]
Brinksma, J.; La Crois, R.; Feringa, B. L.; Donnoli, M. I.; Rosini, C. New ligands for manganese catalysed selective oxidation of sulfides to sulfoxides with hydrogen peroxide. Tetrahed. Lett. 2001, 42, 4049-4052.
[33]
Kawasaki, H.; Kumar, S.; Li, G.; Zeng, C. J.; Kauffman, D. R.; Yoshimoto, J.; Iwasaki, Y.; Jin, R. C. Generation of singlet oxygen by photoexcited Au25(SR)18 clusters. Chem. Mater. 2014, 26, 2777-2788.
[34]
Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368-3374.
Nano Research
Pages 1928-1932
Cite this article:
Zhu Y, Qiu X, Zhao S, et al. Structure regulated catalytic performance of gold nanocluster- MOF nanocomposites. Nano Research, 2020, 13(7): 1928-1932. https://doi.org/10.1007/s12274-020-2715-y
Topics:
Part of a topical collection:

820

Views

59

Crossref

N/A

Web of Science

57

Scopus

7

CSCD

Altmetrics

Received: 28 November 2019
Revised: 11 February 2020
Accepted: 14 February 2020
Published: 09 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return