AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks

De-Li Ma1,2Cheng Qian1,2( )Qiao-Yan Qi2Zhong-Ri Zhong1Guo-Fang Jiang1( )Xin Zhao2( )
State Key Lab of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
Show Author Information

Graphical Abstract

Abstract

The principle of reticular chemistry has been widely used to guide the design of crystalline porous materials such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs). While in the early strategies only the symmetries of the building blocks were considered for reticular synthesis of COFs, recently a few researches on COFs with hierarchical porosities indicate that connecting sequence of building blocks also plays a crucial role in determining crystalline structures of COFs. However, this important phenomenon has not been systematically investigated yet. In this article, a model system has been established to demonstrate how different connecting sequences of two C2v-symmetric building blocks lead to the formation of four two-dimensional (2D) COFs with distinct framework structures. To verify this concept, target synthesis was conducted to produce three COFs, whose structures were confirmed by powder X-ray diffraction and pore size distribution analysis.

Electronic Supplementary Material

Download File(s)
12274_2020_2723_MOESM1_ESM.pdf (5.8 MB)

References

[1]
S. Kandambeth,; K. Dey,; R. Banerjee, Covalent organic frameworks: Chemistry beyond the structure. J. Am. Chem. Soc. 2019, 141, 1807-1822.
[2]
N. Huang,; P. Wang,; D. L. Jiang, Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068.
[3]
M. S. Lohse,; T. Bein, Covalent organic frameworks: Structures, synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553.
[4]
P. J. Waller,; F. Gándara,; O. M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053-3063.
[5]
H. Furukawa,; O. M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.
[6]
Q. Gao,; L. Y. Bai,; X. J. Zhang,; P. Wang,; P. Z. Li,; Y. F. Zeng,; R. Q. Zou,; Y. L. Zhao, Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO2 capture. Chin. J. Chem. 2015, 33, 90-94.
[7]
Z. X. Kang,; Y. W. Peng,; Y. H. Qian,; D. Q. Yuan,; M. A. Addicoat,; T. Heine,; Z. G. Hu,; L. Tee,; Z. G. Guo,; D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277-1285.
[8]
H. W. Fan,; A. Mundstock,; J. H. Gu,; H. Meng,; J. Caro, An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J. Mater. Chem. A 2018, 6, 16849-16853.
[9]
S. Y. Ding,; J. Gao,; Q. Wang,; Y. Zhang,; W. G. Song,; C. Y. Su,; W. Wang, Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in suzuki-miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816-19822.
[10]
L. H. Li,; X. L. Feng,; X. H. Cui,; Y. X. Ma,; S. Y. Ding,; W. Wang, Salen-based covalent organic framework. J. Am. Chem. Soc. 2017, 139, 6042-6045.
[11]
X. Han,; Q. C. Xia,; J. J. Huang,; Y. Liu,; C. X. Tan,; Y. Cui, Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2017, 139, 8693-8697.
[12]
R. F. Chen,; J. L. Shi,; Y. Ma,; G. Q. Lin,; X. J. Lang,; C. Wang, Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430-6434.
[13]
S. Royuela,; E. García-Garrido,; M. M. Arroyo,; M. J. Mancheño,; M. M. Ramos,; D. González-Rodríguez,; Á. Somoza,; F. Zamora,; J. L. Segura, Uracil grafted imine-based covalent organic framework for nucleobase recognition. Chem. Commun. 2018, 54, 8729-8732.
[14]
G. Das,; B. P. Biswal,; S. Kandambeth,; V. Venkatesh,; G. Kaur,; M. Addicoat,; T. Heine,; S. Verma,; R. Banerjee, Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. 2015, 6, 3931-3939.
[15]
M. W. Zhu,; S. Q. Xu,; X. Z. Wang,; Y. Q. Chen,; L. Y. Dai,; X. Zhao, The construction of fluorescent heteropore covalent organic frameworks and their applications in spectroscopic and visual detection of trinitrophenol with high selectivity and sensitivity. Chem. Commun. 2018, 54, 2308-2311.
[16]
G. Q. Lin,; H. M. Ding,; D. Q. Yuan,; B. S. Wang,; C. Wang, A pyrene-based, fluorescent three-dimensional covalent organic framework. J. Am. Chem. Soc. 2016, 138, 3302-3305.
[17]
L. Y. Bai,; S. Z. F. Phua,; W. Q. Lim,; A. Jana,; Z. Luo,; H. P. Tham,; L. Z. Zhao,; Q. Gao,; Y. L. Zhao, Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 2016, 52, 4128-4131.
[18]
Q. R. Fang,; J. H. Wang,; S. Gu,; R. B. Kaspar,; Z. B. Zhuang,; J. Zheng,; H. X. Guo,; S. L. Qiu,; Y. S. Yan, 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352-8355.
[19]
G. Y. Zhang,; X. L. Li,; Q. B. Liao,; Y. F. Liu,; K. Xi,; W. Y. Huang,; X. D. Jia, Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat. Commun. 2018, 9, 2785.
[20]
V. S. Vyas,; M. Vishwakarma,; I. Moudrakovski,; F. Haase,; G. Savasci,; C. Ochsenfeld,; J. P. Spatz,; B. V. Lotsch, Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv Mater. 2016, 28, 8749-8754.
[21]
C. R. Mulzer,; L. X. Shen,; R. P. Bisbey,; J. R. McKone,; N. Zhang,; H. D. Abruña,; W. R. Dichtel, Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent. Sci. 2016, 2, 667-673.
[22]
F. Xu,; H. Xu,; X. Chen,; D. C. Wu,; Y. Wu,; H. Liu,; C. Gu,; R. W. Fu,; D. L. Jiang, Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem., Int. Ed. 2015, 54, 6814-6818.
[23]
J. Q. Lv,; Y. X. Tan,; J. F. Xie,; R. Yang,; M. X. Yu,; S. S. Sun,; M. D. Li,; D. Q. Yuan,; Y. B. Wang, Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem., Int. Ed. 2018, 130, 12898-12902.
[24]
Y. Meng,; G. Q. Lin,; H. M. Ding,; H. P. Liao,; C. Wang, Impregnation of sulfur into a 2D pyrene-based covalent organic framework for high-rate lithium-sulfur batteries. J. Mater. Chem. A 2018, 6, 17186-17191.
[25]
S. Y. Li,; W. H. Li,; X. L. Wu,; Y. Y. Tian,; J. Y. Yue,; G. S. Zhu, Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 2019, 10, 7695-7701.
[26]
P. Pachfule,; A. Acharjya,; J. Roeser,; T. Langenhahn,; M. Schwarze,; R. Schomäcker,; A. Thomas,; J. Schmidt, Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423-1427.
[27]
X. Y. Wang,; L. J. Chen,; S. Y. Chong,; M. A. Little,; Y. Z. Wu,; W. H. Zhu,; R. Clowes,; Y. Yan,; M. A. Zwijnenburg,; R. S. Sprick, et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180-1189.
[28]
K. W. Wang,; L. M. Yang,; X. Wang,; L. P. Guo,; G. Cheng,; C. Zhang,; S. B. Jin,; B. E. Tan,; A. Cooper, Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149-14153.
[29]
S. Bi,; C. Yang,; W. B. Zhang,; J. S. Xu,; L. M. Liu,; D. Q. Wu,; X. C. Wang,; Y. Han,; Q. F. Liang,; F. Zhang, Two-dimensional semiconducting covalent organic frameworks via condensation at arylmethyl carbon atoms. Nat. Commun. 2019, 10, 2467.
[30]
T. Sick,; A. G. Hufnagel,; J. Kampmann,; I. Kondofersky,; M. Calik,; J. M. Rotter,; A. Evans,; M. Döblinger,; S. Herbert,; K. Peters, et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 2018, 140, 2085-2092.
[31]
L. Ma,; S. Wang,; X. Feng,; B. Wang, Recent advances of covalent organic frameworks in electronic and optical applications. Chin. Chem. Lett. 2016, 27, 1383-1394.
[32]
S. Dalapati,; E. Q. Jin,; M. Addicoat,; T. Heine,; D. L. Jiang, Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797-5800.
[33]
X. Li,; Q. Gao,; J. F. Wang,; Y. F. Chen,; Z. H. Chen,; H. S. Xu,; W. Tang,; K. Leng,; G. H. Ning,; J. S. Wu, et al. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 2018, 9, 2335.
[34]
S. L. Cai,; Y. B. Zhang,; A. B. Pun,; B. He,; J. H. Yang,; F. M. Toma,; I. D. Sharp,; O. M. Yaghi,; J. Fan,; S. R. Zheng, et al. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem. Sci. 2014, 5, 4693-4700.
[35]
S. Y. Ding,; M. Dong,; Y. W. Wang,; Y. T. Chen,; H. Z. Wang,; C. Y. Su,; W. Wang, Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 2016, 138, 3031-3037.
[36]
Q. Sun,; B. Aguila,; J. Perman,; L. D. Earl,; C. W. Abney,; Y. C. Cheng,; H. Wei,; N. Nguyen,; L. Wojtas,; S. Q. Ma, Postsynthetically modified covalent organic frameworks for efficient and effective mercury Removal. J. Am. Chem. Soc. 2017, 139, 2786-2793.
[37]
W. Ji,; L. L. Xiao,; Y. H. Ling,; C. Ching,; M. Matsumoto,; R. P. Bisbey,; D. E. Helbling,; W. R. Dichtel, Removal of genX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 12677-12681.
[38]
F. Z. Cui,; R. R. Liang,; Q. Y. Qi,; G. F. Jiang,; X. Zhao, Efficient removal of Cr(VI) from aqueous solutions by a dual-pore covalent organic framework. Adv. Sustainable Syst. 2019, 3, 1800150.
[39]
B. Rungtaweevoranit,; C. S. Diercks,; M. J. Kalmutzki,; O. M. Yaghi, Spiers memorial lecture: Progress and prospects of reticular chemistry. Faraday Discuss. 2017, 201, 9-45.
[40]
Y. W. Peng,; Y. Huang,; Y. H. Zhu,; B. Chen,; L. Y. Wang,; Z. C. Lai,; Z. C. Zhang,; M. T. Zhao,; C. L. Tan,; N. L. Yang, et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698-8704.
[41]
M. Bhadra,; S. Kandambeth,; M. K. Sahoo,; M. Addicoat,; E. Balaraman,; R. Banerjee, Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. J. Am. Chem. Soc. 2019, 141, 6152-6156.
[42]
J. Q. Dong,; Y. X. Wang,; G. L. Liu,; Y. D. Cheng,; D. Zhao, Isoreticular covalent organic frameworks for hydrocarbon uptake and separation: The important role of monomer planarity. CrystEngComm 2017, 19, 4899-4904.
[43]
X. W. Wu,; X. Han,; Y. H. Liu,; Y. Liu,; Y. Cui, Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 2018, 140, 16124-16133.
[44]
S. Duhović,; M. Dincă, Synthesis and electrical properties of covalent organic frameworks with heavy chalcogens. Chem. Mater. 2015, 27, 5487-5490.
[45]
J. R. Song,; J. L. Sun,; J. M. Liu,; Z. T. Huang,; Q. Y. Zheng, Thermally/hydrolytically stable covalent organic frameworks from a rigid macrocyclic host. Chem. Commun. 2014, 50, 788-791.
[46]
D. A. Pyles,; J. W. Crowe,; L. A. Baldwin,; P. L. McGrier, Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Lett. 2016, 5, 1055-1058.
[47]
W. Zhao,; J. Qiao,; T. L. Ning,; X. K. Liu, Scalable ambient pressure synthesis of covalent organic frameworks and their colorimetric nanocomposites through dynamic imine exchange reactions. Chin. J. Polym. Sci. 2018, 36, 1-7.
[48]
E. L. Spitler,; J. W. Colson,; F. J. Uribe-Romo,; A. R. Woll,; M. R. Giovino,; A. Saldivar,; W. R. Dichtel, Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem., Int. Ed. 2012, 51, 2623-2627.
[49]
D. B. Shinde,; S. Kandambeth,; P. Pachfule,; R. R. Kumar,; R. Banerjee, Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem. Commun. 2015, 51, 310-313.
[50]
X. Chen,; J. Gao,; D. L. Jiang, Designed synthesis of porphyrin-based two-dimensional covalent organic frameworks with highly ordered structures. Chem. Lett. 2015, 44, 1257-1259.
[51]
H. M. Wang,; H. M. Ding,; X. S. Meng,; C. Wang, Two-dimensional porphyrin- and phthalocyanine-based covalent organic frameworks. Chin. Chem. Lett. 2016, 27, 1376-1382.
[52]
S. Y. Ding,; W. Wang, Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548-568.
[53]
M. Dogru,; T. Bein, On the road towards electroactive covalent organic frameworks. Chem. Commun. 2014, 50, 5531-5546.
[54]
J. L. Segura,; M. J. Mancheño,; F. Zamora, Covalent organic frameworks based on schiff-base chemistry: Synthesis, properties and potential applications. Chem Soc. Rev. 2016, 45, 5635-5671.
[55]
T. Y. Zhou,; S. Q. Xu,; Q. Wen,; Z. F. Pang,; X. Zhao, One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 2014, 136, 15885-15888.
[56]
Z. F. Pang,; T. Y. Zhou,; R. R. Liang,; Q. Y. Qi,; X. Zhao, Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents. Chem. Sci. 2017, 8, 3866-3870.
[57]
C. Qian,; Q. Y. Qi,; G. F. Jiang,; F. Z. Cui,; Y. Tian,; X. Zhao, Toward covalent organic frameworks bearing three different kinds of pores: The strategy for construction and COF-to-COF transformation via heterogeneous linker exchange. J. Am. Chem. Soc. 2017, 139, 6736-6743.
[58]
Y. L. Zhu,; S. Wan,; Y. H. Jin,; W. Zhang, Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 2015, 137, 13772-13775.
[59]
Y. H. Jin,; Y. M. Hu,; W. Zhang, Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 2017, 1, 0056.
[60]
R. R. Liang,; X. Zhao, Heteropore covalent organic frameworks: A new class of porous organic polymers with well-ordered hierarchical porosities. Org. Chem. Front. 2018, 5, 3341-3356.
Nano Research
Pages 381-386
Cite this article:
Ma D-L, Qian C, Qi Q-Y, et al. Effects of connecting sequences of building blocks on reticular synthesis of covalent organic frameworks. Nano Research, 2021, 14(2): 381-386. https://doi.org/10.1007/s12274-020-2723-y
Topics:

841

Views

17

Crossref

N/A

Web of Science

16

Scopus

3

CSCD

Altmetrics

Received: 27 November 2019
Revised: 17 February 2020
Accepted: 19 February 2020
Published: 11 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return