Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection

Lin Wang1Qiuyan Yue1Chengjie Pei1Huacheng Fan1Jie Dai1Xiao Huang1()Hai Li1()Wei Huang1,2
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Recently, transition metal dichalcogenides (TMDCs) nanoscrolls have exhibited unique electronic and optical properties due to their spiral tubular structures, which are formed by rolling up monolayer TMDCs nanosheets. Inspired by the excellent physical and chemical properties of TMDCs van der Waals heterostructures (vdWHs), it is highly desirable to scroll TMDCs vdWHs for potential optoelectronic applications. In this work, WS2/MoS2 vdWHs nanoscrolls were massively prepared by dropping aqueous alkaline droplet on chemical vapor deposition (CVD)-grown bilayer WS2/MoS2 vdWHs, which were formed by growing monolayer WS2 islands on top of monolayer MoS2 nanosheets simultaneously. The optical microscopy (OM), atomic force microscopy (AFM), ultralow frequency (ULF) Raman spectroscopy and transmission electron microscopy (TEM) were utilized to characterize the WS2/MoS2 vdWHs nanoscrolls. As-obtained WS2/MoS2 vdWHs nanoscrolls exhibited new ULF breathing mode as well as shear mode peaks due to the strong interlayer interaction. Notably, the photosensitivities of WS2/MoS2 vdWHs nanoscrolls-based devices were about ten times higher than those of WS2/MoS2 vdWHs-based devices under blue, green and red lasers, respectively, which could be attributed to the ultrafast charge transfer at alternative WS2/MoS2 and MoS2/WS2 multi-interfaces in scrolled structure. Our work suggested that TMDCs vdWHs scrolls could be promising candidates for optoelectronic applications.

Electronic Supplementary Material

Video
12274_2020_2725_MOESM1_ESM.avi
12274_2020_2725_MOESM2_ESM.avi
12274_2020_2725_MOESM3_ESM.avi
Download File(s)
12274_2020_2725_MOESM4_ESM.pdf (3.6 MB)

References

[1]
Sharifi, T.; Gracia-Espino, E.; Barzegar, H. R.; Jia, X. E.; Nitze, F.; Hu, G. Z.; Nordblad, P.; Tai, C. W.; Wagberg, T. Formation of nitrogen-doped graphene nanoscrolls by adsorption of magnetic γ-Fe2O3 nanoparticles. Nat. Commun. 2013, 4, 2319.
[2]
Lai, Z. C.; Chen, Y.; Tan, C. L.; Zhang, X.; Zhang, H. Self-assembly of two-dimensional nanosheets into one-dimensional nanostructures. Chem 2016, 1, 59-77.
[3]
Wei, Q. L.; Tan, S. S.; Liu, X. Y.; Yan, M. Y.; Wang, F. C.; Li, Q. D.; An, Q. Y.; Sun, R. M.; Zhao, K. N.; Wu, H. A. et al. Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Adv. Funct. Mater. 2015, 25, 1773-1779.
[4]
Li, H.; Wu, J.; Qi, X. Y.; He, Q. Y.; Liusman, C.; Lu, G.; Zhou, X. Z.; Zhang, H. Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing. Small 2013, 9, 382-386.
[5]
Fang, Q. L.; Zhou, X. F.; Deng, W.; Liu, Y. W.; Zheng, Z.; Liu, Z. P. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants. Small 2017, 13, 1603779.
[6]
Zeng, F. Y.; Kuang, Y. F.; Wang, Y.; Huang, Z. Y.; Fu, C. P.; Zhou, H. H. Facile preparation of high-quality graphene scrolls from graphite oxide by a microexplosion method. Adv. Mater. 2011, 23, 4929-4932.
[7]
Fang, X. R.; Wei, P.; Wang, L.; Wang, X. S.; Chen, B.; He, Q. Y.; Yue, Q. Y.; Zhang, J. D.; Zhao, W. H.; Wang, J. L. et al. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl. Mater. Interfaces 2018, 10, 13011-13018.
[8]
Cui, X. P.; Kong, Z. Z.; Gao, E. L.; Huang, D. Z.; Hao, Y.; Shen, H. G.; Di, C. A.; Xu, Z. P.; Zheng, J.; Zhu, D. B. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301.
[9]
Meng, J. L.; Wang, G. L.; Li, X. M.; Lu, X. B.; Zhang, J.; Yu, H.; Chen, W.; Du, L. J.; Liao, M. Z.; Zhao, J. et al. Rolling up a monolayer MoS2 sheet. Small 2016, 12, 3770-3774.
[10]
Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565-2570.
[11]
Ji, E.; Son, J.; Kim, J. H.; Lee, G. H. Rolling up two-dimensional sheets into nanoscrolls. FlatChem 2018, 7, 26-33.
[12]
Liu, Z. M.; Wang, J.; Ding, H. B.; Chen, S. H.; Yu, X. Z.; Lu, B. G. Carbon nanoscrolls for aluminum battery. ACS Nano 2018, 12, 8456-8466.
[13]
Zhou, X. F.; Tian, Z.; Kim, H. J.; Wang, Y.; Xu, B. R.; Pan, R. B.; Chang, Y. J.; Di, Z. F.; Zhou, P.; Mei, Y. F. Rolling up MoSe2 nanomembranes as a sensitive tubular photodetector. Small 2019, 15, 1902528.
[14]
Deng, W. J.; You, C. Y.; Chen, X. Q.; Wang, Y.; Li, Y. F.; Feng, B. B.; Shi, K.; Chen, Y. F.; Sun, L.; Zhang, Y. Z. High-performance photodiode based on atomically thin WSe2/MoS2 nanoscroll integration. Small 2019, 15, 1901544.
[15]
Hao, S.; Yang, B. C.; Gao, Y. L. Fracture-induced nanoscrolls from CVD-grown monolayer molybdenum disulfide. Phys. Status Solidi 2016, 10, 549-553.
[16]
Li, F.; Wang, J. H.; Liu, L. X.; Qu, J.; Li, Y.; Bandari, V. K.; Karnaushenko, D.; Becker, C.; Faghih, M.; Kang, T. et al. Self-assembled flexible and integratable 3D microtubular asymmetric supercapacitors. Adv. Sci. 2019, 6, 1901051.
[17]
Amadei, C. A.; Stein, I. Y.; Silverberg, G. J.; Wardle, B. L.; Vecitis, C. D. Fabrication and morphology tuning of graphene oxide nanoscrolls. Nanoscale 2016, 8, 6783-6791.
[18]
Wang, L.; Yang, P.; Liu, Y.; Fang, X. R.; Shi, X. T.; Wu, S. Y.; Huang, L.; Li, H.; Huang, X.; Huang, W. Scrolling up graphene oxide nanosheets assisted by self-assembled monolayers of alkanethiols. Nanoscale 2017, 9, 9997-10001.
[19]
Bejagam, K. K.; Singh, S.; Deshmukh, S. A. Nanoparticle activated and directed assembly of graphene into a nanoscroll. Carbon 2018, 134, 43-52.
[20]
Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893-1897.
[21]
Zheng, B. N.; Xu, Z.; Gao, C. Mass production of graphene nanoscrolls and their application in high rate performance supercapacitors. Nanoscale 2016, 8, 1413-1420.
[22]
Zeng, F. Y.; Kuang, Y. F.; Liu, G. Q.; Liu, R.; Huang, Z. Y.; Fu, C. P.; Zhou, H. H. Supercapacitors based on high-quality graphene scrolls. Nanoscale 2012, 4, 3997-4001.
[23]
Zhao, J. P.; Yang, B. J.; Zheng, Z. M.; Yang, J.; Yang, Z.; Zhang, P.; Ren, W. C.; Yan, X. B. Facile preparation of one-dimensional wrapping structure: Graphene nanoscroll-wrapped of Fe3O4 nanoparticles and its application for lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 9890-9896.
[24]
Baimuratov, A. S.; Gun’ko, Y. K.; Shalkovskiy, A. G.; Baranov, A. V.; Fedorov, A. V.; Rukhlenko, I. D. Optical activity of chiral nanoscrolls. Adv. Opt. Mater. 2017, 5, 1600982.
[25]
Guo, Y.; Zhao, G.; Wu, N. T.; Zhang, Y.; Xiang, M. W.; Wang, B.; Liu, H.; Wu, H. Efficient synthesis of graphene nanoscrolls for fabricating sulfur-loaded cathode and flexible hybrid interlayer toward high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 34185-34193.
[26]
Liu, Y. W.; Siddique, A. H.; Huang, H. R.; Fang, Q. L.; Deng, W.; Zhou, X. F.; Lu, H. M.; Liu, Z. P. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries. Nanotechnology 2017, 28, 465401.
[27]
Rani, J. R.; Oh, S. I.; Woo, J. M.; Tarwal, N. L.; Kim, H. W.; Mun, B. S.; Lee, S.; Kim, K. J.; Jang, J. H. Graphene oxide-phosphor hybrid nanoscrolls with high luminescent quantum yield: Synthesis, structural, and X-ray absorption studies. ACS Appl. Mater. Interfaces 2015, 7, 5693-5700.
[28]
Mei, Y. F.; Solovev, A. A.; Sanchez, S.; Schmidt, O. G. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109-2119.
[29]
Li, J. L.; Peng, Q. S.; Bai, G. Z.; Jiang, W. Carbon scrolls produced by high energy ball milling of graphite. Carbon 2005, 43, 2830-2833.
[30]
Savoskin, M. V.; Mochalin, V. N.; Yaroshenko, A. P.; Lazareva, N. I.; Konstantinova, T. E.; Barsukov, I. V.; Prokofiev, I. G. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 2007, 45, 2797-2800.
[31]
Wu, J.; Li, H.; Qi, X. Y.; He, Q. Y.; Xu, B. X.; Zhang, H. Graphene oxide architectures prepared by molecular combing on hydrophilic-hydrophobic micropatterns. Small 2014, 10, 2239-2344.
[32]
Wu, J.; Yang, J.; Huang, Y.; Li, H.; Fan, Z. X.; Liu, J. Q.; Cao, X. H.; Huang, X.; Huang, W.; Zhang, H. Graphene oxide scroll meshes prepared by molecular combing for transparent and flexible electrodes. Adv. Mater. Technol. 2017, 2, 1600231.
[33]
Li, H. N.; Li, Y.; Aljarb, A.; Shi, Y. M.; Li, L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: Growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134-6150.
[34]
Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 2015, 10, 128-137.
[35]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[36]
Thangasamy, P.; Sathish, M. Rapid, one-pot synthesis of luminescent MoS2 nanoscrolls using supercritical fluid processing. J. Mater. Chem. C 2016, 4, 1165-1169.
[37]
Huo, N. J.; Kang, J.; Wei, Z. M.; Li, S. S.; Li, J. B.; Wei, S. H. Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 2014, 24, 7025-7031.
[38]
Zeng, Q. S.; Liu, Z. Novel optoelectronic devices: Transition-metal-dichalcogenide-based 2D heterostructures. Adv. Electron. Mater. 2018, 4, 1700335.
[39]
Shan, J. J.; Li, J. H.; Chu, X. Y.; Xu, M. Z.; Jin, F. J.; Fang, X.; Wei, Z. P.; Wang, X. H. Enhanced photoresponse characteristics of transistors using CVD-grown MoS2/WS2 heterostructures. Appl. Surf. Sci. 2018, 443, 31-38.
[40]
Zhang, J.; Du, L. J.; Feng, S.; Zhang, R. W.; Cao, B. C.; Zou, C. J.; Chen, Y.; Liao, M. Z.; Zhang, B. L.; Yang, S. A. et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226.
[41]
Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091-6133.
[42]
Xi, Y. L.; Zhuang, J. C.; Hao, W. C.; Du, Y. Recent progress on two-dimensional heterostructures for catalytic, optoelectronic, and energy applications. Chem. Electro. Chem. 2019, 6, 2841-2851.
[43]
Guo, J.; Wang, L. Y.; Yu, Y. W.; Wang, P. Q.; Huang, Y.; Duan, X. F. SnSe/MoS2 van der waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv. Mater. 2019, 31, 1902962.
[44]
Yang, Z. Y.; Liao, L.; Gong, F.; Wang, F.; Wang, Z.; Liu, X. Q.; Xiao, X. H.; Hu, W. D.; He, J.; Duan, X. F. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy 2018, 49, 103-108.
[45]
Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.
[46]
Ye, K.; Liu, L. X.; Liu, Y. J.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.
[47]
Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.
[48]
Peng, Y. K.; Cao, Z. Y.; Chen, L. C.; Dai, N.; Sun, Y.; Chen, X. J. Phonon anharmonicity of tungsten disulfide. J. Phys. Chem. C 2019, 123, 25509-25514.
[49]
Zhang, F.; Lu, Z. X.; Choi, Y.; Liu, H. N.; Zheng, H. S.; Xie, L. M.; Park, K.; Jiao, L. Y.; Tao, C. G. Atomically resolved observation of continuous interfaces between an as-grown MoS2 monolayer and a WS2/MoS2 heterobilayer on SiO2. ACS Appl. Nano Mater. 2018, 1, 2041-2048.
[50]
Tan, Q. H.; Sun, Y. J.; Liu, X. L.; Zhao, Y. Y.; Xiong, Q. H.; Tan, P. H.; Zhang, J. Observation of forbidden phonons, Fano resonance and dark excitons by resonance Raman scattering in few-layer WS2. 2D Mater. 2017, 4, 031007.
[51]
Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198-6202.
[52]
Wu, W. H.; Zhang, Q.; Zhou, X.; Li, L.; Su, J. W.; Wang, F. K.; Zhai, T. Y. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45-53.
[53]
Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.
[54]
Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.
[55]
Shim, J.; Kim, H. S.; Shim, Y. S.; Kang, D. H.; Park, H. Y.; Lee, J.; Jeon, J.; Jung, S. J.; Song, Y. J.; Jung, W. S. et al. Extremely large gate modulation in vertical graphene/WSe2 heterojunction barristor based on a novel transport mechanism. Adv. Mater. 2016, 28, 5293-5299.
[56]
Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.
[57]
Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.
[58]
Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035-8041.
[59]
Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405-4413.
[60]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.
[61]
Klee, V.; Preciado, E.; Barroso, D.; Nguyen, A. E.; Lee, C.; Erickson, K. J.; Triplett, M.; Davis, B.; Lu, I. H.; Bobek, S. et al. Superlinear composition-dependent photocurrent in CVD-grown monolayer MoS2(1-x)Se2x alloy devices. Nano Lett. 2015, 15, 2612-2619.
[62]
Li, L.; Wang, W. K.; Gan, L.; Zhou, N.; Zhu, X. D.; Zhang, Q.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Ternary Ta2NiSe5 flakes for a high-performance infrared photodetector. Adv. Funct. Mater. 2016, 26, 8281-8289.
[63]
Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456-3461.
[64]
Zheng, L. X.; Yu, P. P.; Hu, K.; Teng, F.; Chen, H. Y.; Fang, X. S. Scalable-production, self-powered TiO2 nanowell-organic hybrid UV photodetectors with tunable performances. ACS Appl. Mater. Interfaces 2016, 8, 33924-33932.
[65]
Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.
[66]
Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.
[67]
Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[68]
Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717-12724.
[69]
Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.
[70]
Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313-8320.
Nano Research
Pages 959-966
Cite this article:
Wang L, Yue Q, Pei C, et al. Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Research, 2020, 13(4): 959-966. https://doi.org/10.1007/s12274-020-2725-9
Topics:
Metrics & Citations  
Article History
Copyright
Return