AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Carbon nanotube-based electrodes for flexible supercapacitors

Sheng Zhu1Jiangfeng Ni2( )Yan Li1( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
School of Physical Science and Technology, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
Show Author Information

Graphical Abstract

Abstract

Flexible supercapacitors (SCs) have attracted increasing attention as the power supply unit for portable/wearable electronics. Carbon nanotubes (CNTs) are promising candidate materials for flexible SC electrodes because of their outstanding mechanical property, high electrical conductivity, large surface area, and functionability. CNTs can assemble into various macroscopic materials with different dimensions. In this review, flexible CNT assemblies including 1D fibers, 2D films, and 3D aerogels and sponges are introduced with a focus on the design strategies and fabrication techniques. The recent developments and state-of-the-art applications of such structures as electrodes in flexible SCs are summarized based on device configurations including sandwiched, interdigital in-plane, and cable-type configurations. The flexible CNT-based electrodes have shown great advantages in bendability, stretchability and/or compressibility, as well as a long cycle lifetime. The current challenges and future research opportunities in this field are also discussed.

References

[1]
Shao, Y. L.; El-Kady, M. F.; Wang, L. J.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639-3665.
[2]
Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536.
[3]
Wang, Y. Q.; Ding, Y.; Guo, X. L.; Yu, G. H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978-1987.
[4]
Li, W. W.; Gao, F. X.; Wang, X. Q.; Zhang, N.; Ma, M. M. Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem., Int. Ed. 2016, 55, 9196-9201.
[5]
Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524-1544.
[6]
Liu, L. L.; Niu, Z. Q.; Chen, J. Flexible supercapacitors based on carbon nanotubes. Chin. Chem. Lett. 2018, 29, 571-581.
[7]
Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691-695.
[8]
El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326-1330.
[9]
Zhu, S.; Li, Y. T.; Zhu, H. Y.; Ni, J. F.; Li, Y. Pencil-drawing skin-mountable micro-supercapacitors. Small 2019, 15, 1804037.
[10]
Fu, Y. P.; Cai, X.; Wu, H. W.; Lv, Z. B.; Hou, S. C.; Peng, M.; Yu, X.; Zou, D. C. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 2012, 24, 5713-5718.
[11]
Salanne, M.; Rotenberg, B.; Naoi, K.; Kaneko, K.; Taberna, P. L.; Grey, C. P.; Dunn, B.; Simon, P. Efficient storage mechanisms for building better supercapacitors. Nat. Energy 2016, 1, 16070.
[12]
Zhu, S.; Wang, Z. D.; Huang, F. Z.; Zhang, H.; Li, S. K. Hierarchical Cu(OH)2@Ni2(OH)2CO3 core/shell nanowire arrays in situ grown on three-dimensional copper foam for high-performance solid-state supercapacitors. J. Mater. Chem. A 2017, 5, 9960-9969.
[13]
El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.
[14]
Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.
[15]
Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.
[16]
Zuo, W. H.; Li, R. Z.; Zhou, C.; Li, Y. Y.; Xia, J. L.; Liu, J. P. Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 2017, 4, 1600539.
[17]
Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. Carbon-based composite materials for supercapacitor electrodes: A review. J. Mater. Chem. A 2017, 5, 12653-12672.
[18]
Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.
[19]
Zhu, S.; Wu, M.; Ge, M. H.; Zhang, H.; Li, S. K.; Li, C. H. Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors. J. Power Sources 2016, 306, 593-601.
[20]
Sun, G. Z.; Zhang, X.; Lin, R. Z.; Yang, J.; Zhang, H.; Chen, P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 4651-4656.
[21]
Zhou, Q. Y.; Fan, T. W.; Li, Y. Y.; Chen, D. C.; Liu, S. L.; Li, X. Hollow-structure NiCo hydroxide/carbon nanotube composite for high-performance supercapacitors. J. Power Sources 2019, 426, 111-115.
[22]
Zhou, Y. S.; Zhu, Y. C.; Xu, B. S.; Zhang, X. J. High electroactive material loading on a carbon nanotube/carbon nanofiber as an advanced free-standing electrode for asymmetric supercapacitors. Chem. Commun. 2019, 55, 4083-4086.
[23]
Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.
[24]
Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.
[25]
Ni, J. F.; Wang, G. B.; Yang, J.; Gao, D. L.; Chen, J. T.; Gao, L. J., Li, Y. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability. J. Power Sources 2014, 247, 90-94.
[26]
Jin, Q.; Jiang, S.; Zhao, Y.; Wang, D.; Qiu, J. H.; Tang, D. M.; Tan, J.; Sun, D. M.; Hou, P. X.; Chen, X. Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 2019, 18, 62-68.
[27]
Headrick, R. J.; Tsentalovich, D. E.; Berdegué, J.; Bengio, E. A.; Liberman, L.; Kleinerman, O.; Lucas, M. S.; Talmon, Y.; Pasquali, M. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater. 2018, 30, 1704482.
[28]
Lu, Z.; Raad, R.; Safaei, F.; Xi, J. T.; Liu, Z. F.; Foroughi, J. Carbon nanotube based fiber supercapacitor as wearable energy storage. Front. Mater. 2019, 6, 138.
[29]
Zubair, A.; Wang, X.; Mirri, F.; Tsentalovich, D. E.; Fujimura, N.; Suzuki, D.; Soundarapandian, K. P.; Kawano, Y.; Pasquali, M.; Kono, J. Carbon nanotube woven textile photodetector. Phys. Rev. Mater. 2018, 2, 015201.
[30]
Vigolo, B.; Pénicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331-1334.
[31]
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
[32]
Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358-1361.
[33]
Zhang, Y.; Bai, W. Y.; Cheng, X. L.; Ren, J.; Weng, W.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Peng, H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem., Int. Ed. 2014, 53, 14564-14568.
[34]
Han, B. J.; Liu, T.; Huang, Z. J.; Chen, D. M.; Zhu, Y. S.; Zhou, C. Y.; Li, Y. S.; Yin, Y. H.; Wu, Z. P. Preparation of flexible carbon nanotube ropes for low-voltage heat generator. Appl. Phys. Lett. 2017, 110, 103902.
[35]
Ryu, S.; Lee, P.; Chou, J. B.; Xu, R. Z.; Zhao, R.; John, A.; Hart, A. J.; Kim, S. G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015, 9, 5929-5936.
[36]
Zhou, J.; Xu, X. Z.; Xin, Y. Y.; Lubineau, G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv. Funct. Mater. 2018, 28, 1705591.
[37]
Yu, J. L.; Wang, L. Y.; Lai, X. H.; Pei, S. P.; Zhuang, Z. B.; Meng, L. H.; Huang, Y. D.; Li, Q. W.; Lu, W. B.; Byun, J. H. et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation. Carbon 2015, 94, 352-361.
[38]
Sun, Y. P.; Li, S. H.; Shang, Y. Y.; Hou, S. Y.; Chang, S. L.; Shi, E. Z.; Cao, A. Y. Highly stretchable carbon nanotube fibers with tunable and stable light emission. Adv. Eng. Mater. 2019, 21, 1801126.
[39]
Li, M. Y.; Zu, M.; Yu, J. S.; Cheng, H. F.; Li, Q. W. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 2017, 13, 1602994.
[40]
Zhu, S.; Li, Y. Carbon-metal oxide nanocomposites as lithium-sulfur battery cathodes. Funct. Mater. Lett. 2018, 11, 1830007.
[41]
Han, Y. C.; Chen, P. S.; Xia, Y. F.; Huang, S. Q.; Chen, W. X.; Lu, W. Y. Electrodeposition of polypyrrole on He plasma etched carbon nanotube films for electrodes of flexible all-solid-state supercapacitor. J. Solid State Electrochem. 2019, 23, 1553-1562.
[42]
Jo, J. W.; Jung, J. W.; Lee, J. U.; Jo, W. H. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano 2010, 4, 5382-5388.
[43]
Liu, Q. F.; Fujigaya, T.; Cheng, H. M.; Nakashima, N. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films. J. Am. Chem. Soc. 2010, 132, 16581-16586.
[44]
Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29-53.
[45]
Kaskela, A.; Nasibulin, A. G.; Timmermans, M. Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D. P.; Zakhidov, A. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010, 10, 4349-4355.
[46]
Ma, W. J.; Song, L.; Yang, R.; Zhang, T. H.; Zhao, Y. C.; Sun, L. F.; Ren, Y.; Liu, D. F.; Liu, L. F.; Shen, J. et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007, 7, 2307-2311.
[47]
Jiang, S.; Hou, P. X.; Chen, M. L.; Wang, B. W.; Sun, D. M.; Tang, D. M.; Jin, Q.; Guo, Q. X.; Zhang, D. D.; Du, J. H. et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes. Sci. Adv. 2018, 4, eaap9264.
[48]
Zheng, M. B.; Chi, Y.; Hu, Q.; Tang, H.; Jiang, X. L.; Zhang, L.; Zhang, S. T.; Pang, H.; Xu, Q. Carbon nanotube-based materials for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 17204-17241.
[49]
Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.
[50]
Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539-4545.
[51]
Jin, X.; Tan, H. X.; Wu, Z. P.; Liang, J. C.; Miao, W. T.; Lian, C. S.; Wang, J. T.; Liu, K.; Wei, H. M.; Feng, C. et al. Continuous, ultra-lightweight, and multipurpose super-aligned carbon nanotube tapes viable over a wide range of temperatures. Nano Lett. 2019, 19, 6756-6764.
[52]
Cao, C. Y.; Zhou, Y. H.; Ubnoske, S.; Zang, J. F.; Cao, Y. T.; Henry, P.; Parker, C. B.; Glass, J. T. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 2019, 9, 1900618.
[53]
Yin, Y. L.; Xu, Y.; Zhou, Y.; Yan, Y.; Zhan, K.; Yang, J. H.; Li, J. Q.; Zhao, B. Millimeter-long vertically aligned carbon-nanotube-supported Co3O4 composite electrode for high-performance asymmetric supercapacitor. ChemElectroChem 2018, 5, 1394-1400.
[54]
Wang, Y. S.; Wang, Z. P.; Chen, Y. J.; Zhang, H.; Yousaf, M.; Wu, H. S.; Zou, M. C.; Cao, A. Y.; Han, R. P. S. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 2018, 30, 1802074.
[55]
Ni, J. F.; Sun, M. L.; Li, L. Highly efficient sodium storage in iron oxide nanotube arrays enabled by built-in electric field. Adv. Mater. 2019, 31, 1902603.
[56]
Ni, J. F.; Li, L. Self-supported 3D array electrodes for sodium microbatteries. Adv. Funct. Mater. 2018, 28, 1704880.
[57]
Guo, F.; Jiang, Y. Q.; Xu, Z.; Xiao, Y. H.; Fang, B.; Liu, Y. J.; Gao, W. W.; Zhao, P.; Wang, H. T.; Gao, C. Highly stretchable carbon aerogels. Nat. Commun. 2018, 9, 881.
[58]
Bryning, M. B.; Milkie, D. E.; Islam, M. F.; Hough, L. A.; Kikkawa, J. M.; Yodh, A. G. Carbon nanotube aerogels. Adv. Mater. 2007, 19, 661-664.
[59]
Van Aken, K. L.; Pérez, C. R.; Oh, Y.; Beidaghi, M.; Jeong, Y. J.; Islam, M. F.; Gogotsi, Y. High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 2015, 15, 662-669.
[60]
Kim, K. H.; Oh, Y.; Islam, M. F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat. Nanotechnol. 2012, 7, 562-566.
[61]
Pan, Z. H.; Liu, M. N.; Yang, J.; Qiu, Y. C.; Li, W. F.; Xu, Y.; Zhang, X. Y.; Zhang, Y. G. High electroactive material loading on a carbon nanotube@3D graphene aerogel for high-performance flexible all-solid-state asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1701122.
[62]
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617-621.
[63]
Zhong, J.; Yang, Z. Y.; Mukherjee, R.; Thomas, A. V.; Zhu, K.; Sun, P. Z.; Lian, J.; Zhu, H. W.; Koratkar, N. Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy 2013, 2, 1025-1030.
[64]
Cao, X.; He, J.; Li, H.; Kang, L. P.; He, X. X.; Sun, J.; Jiang, R. B.; Xu, H.; Lei, Z. B.; Liu, Z. H. CoNi2S4 nanoparticle/carbon nanotube sponge cathode with ultrahigh capacitance for highly compressible asymmetric supercapacitor. Small 2018, 14, 1800998.
[65]
Wang, Y. S.; Ma, Z. M.; Chen, Y. J.; Zou, M. C.; Yousaf, M.; Yang, Y. B.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Controlled synthesis of core-shell carbon@MoS2 nanotube sponges as high-performance battery electrodes. Adv. Mater. 2016, 28, 10175-10181.
[66]
Wu, P.; Cheng, S.; Yang, L. F.; Lin, Z. Q.; Gui, X. C.; Ou, X.; Zhou, J.; Yao, M. H.; Wang, M. K.; Zhu, Y. Y. et al. Synthesis and characterization of self-standing and highly flexible δ-MnO2@CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl. Mater. Interfaces 2016, 8, 23721-23728.
[67]
Chen, Y. J.; Wang, Y. S.; Wang, Z. P.; Zou, M. C.; Zhang, H.; Zhao, W. Q.; Yousaf, M.; Yang, L. S.; Cao, A. Y.; Han, R. P. S. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 Sponge. Adv. Energy Mater. 2018, 8, 1702981.
[68]
Xie, X.; Ye, M.; Hu, L. B.; Liu, N.; McDonough, J. R.; Chen, W.; Alshareef, H. N.; Criddle, C. S.; Cui, Y. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci. 2012, 5, 5265-5270.
[69]
Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872-1876.
[70]
Vincent, C. A. Polymer electrolytes. Prog. Solid State Chem. 1987, 17, 145-261.
[71]
Nohara, S.; Wada, H.; Furukawa, N.; Inoue, H.; Morita, M.; Iwakura, C. Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte. Electrochim. Acta 2003, 48, 749-753.
[72]
Kanninen, P.; Luong, N. D.; Sinh, L. H.; Anoshkin, I. V.; Tsapenko, A.; Seppälä, J.; Nasibulin, A. G.; Kallio, T. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology 2016, 27, 235403.
[73]
Jiang, Y. C.; Wu, Z. Y.; Jiang, L.; Pan, Z. C.; Yang, P. Y.; Tian, W. C.; Hu, L. F. Freestanding CoSeO3·H2O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale 2018, 10, 12003-12010.
[74]
Wang, Q.; Wang, H. X.; Du, P. C.; Liu, J. L.; Liu, D.; Liu, P. Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors. Electrochim. Acta 2019, 294, 312-324.
[75]
Jiang, H. F.; Cai, X. Y.; Qian, Y.; Zhang, C. Y.; Zhou, L. J.; Liu, W. L.; Li, B. S.; Lai, L. F.; Huang, W. V2O5 embedded in vertically aligned carbon nanotube arrays as free-standing electrodes for flexible supercapacitors. J. Mater. Chem. A 2017, 5, 23727-23736.
[76]
Hou, X. Y.; Peng, T.; Cheng, J. B.; Yu, Q. H.; Luo, R. J.; Lu, Y.; Liu, X. M.; Kim, J. K.; He, J.; Luo, Y. S. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 2017, 10, 2570-2583.
[77]
Zeng, S.; Chen, H. Y.; Cai, F.; Kang, Y. R.; Chen, M. H.; Li, Q. W. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance. J. Mater. Chem. A 2015, 3, 23864-23870.
[78]
Zhou, Y.; Wang, X. X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X. C.; Stein, Y.; Gleason, K. K.; Wardle, B. L. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019, 31, 1901916.
[79]
Chen, X. L.; Lin, H. J.; Chen, P. N.; Guan, G. Z.; Deng, J.; Peng, H. S. Smart, stretchable supercapacitors. Adv. Mater. 2014, 26, 4444-4449.
[80]
Yu, M. H.; Zhang, Y. F.; Zeng, Y. X.; Balogun, M. S.; Mai, K. S.; Zhang, Z. S.; Lu, X. H.; Tong, Y. X. Water surface assisted synthesis of large-cale carbon nanotube film for high-performance and stretchable supercapacitors. Adv. Mater. 2014, 26, 4724-4729.
[81]
Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975-7982.
[82]
Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058-1064.
[83]
Lv, T.; Yao, Y.; Li, N.; Chen, T. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew. Chem., Int. Ed. 2016, 55, 9191-9195.
[84]
Zhang, Z. T.; Wang, L.; Li, Y. M.; Wang, Y. H.; Zhang, J.; Guan, G. Z.; Pan, Z. Y.; Zheng, G. F.; Peng, H. S. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv. Energy Mater. 2017, 7, 1601814.
[85]
He, X.; Yang, W. Y.; Mao, X. L.; Xu, L.; Zhou, Y. J.; Chen, Y.; Zhao, Y. T.; Yang, Y. J.; Xu, J. H. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J. Power Sources 2018, 376, 138-146.
[86]
Wang, H. C.; Liu, X. P.; Zhang, B. C.; Yang, J. B.; Zhang, Z. J.; Yue, R. R.; Wang, Z. W. Highly compressible supercapacitor based on carbon nanotubes-reinforced sponge electrode. J. Alloys Compd. 2019, 786, 995-1004.
[87]
Zhang, Y. Y.; Zhen, Z.; Zhang, Z. L.; Lao, J. C.; Wei, J. Q.; Wang, K. L.; Kang, F. Y.; Zhu, H. W. In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochim. Acta 2015, 157, 134-141.
[88]
Tong, H.; Yue, S. H.; Lu, L.; Jin, F. Q.; Han, Q. W.; Zhang, X. G.; Liu, J. A binder-free NiCo2O4 nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors. Nanoscale 2017, 9, 16826-16835.
[89]
Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002-6008.
[90]
Wang, X.; Li, H.; Li, H.; Lin S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Nanoscale 2019, 11, 8138-8149.
[91]
Li, X. M.; Shao, J. Y.; Kim, S. K.; Yao, C. C.; Wang, J. J.; Miao, Y. R.; Zheng, Q. Y.; Sun, P. C.; Zhang, R. Y.; Braun, P. V. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes. Nat. Commun. 2018, 9, 2578.
[92]
Guo, R. S.; Chen, J. T.; Yang, B. J.; Liu, L. Y.; Su, L. J.; Shen, B. S.; Yan, X. B. In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv. Funct. Mater. 2017, 27, 1702394.
[93]
Liu, Z. Y.; Wu, Z. S.; Yang, S.; Dong, R. H.; Feng, X. L.; Müllen, K. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene. Adv. Mater. 2016, 28, 2217-2222.
[94]
Du, J. W.; Mu, X. M.; Zhao, Y. R.; Zhang, Y. X.; Zhang, S. M.; Huang, B. Y.; Sheng, Y. Z.; Xie, Y. Z.; Zhang, Z. X.; Xie, E. Q. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Nanoscale 2019, 11, 14392-14399.
[95]
Liu, N. S.; Gao, Y. H. Recent progress in micro-supercapacitors with in-plane interdigital electrode architecture. Small 2017, 13, 1701989.
[96]
Pu, X.; Liu, M. M.; Li, L. X.; Han, S. C.; Li, X. L.; Jiang, C. Y.; Du, C. H.; Luo, J. J.; Hu, W. G.; Wang, Z. L. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601254.
[97]
Li, J. H.; Shi, Q. W.; Shao, Y. L.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Cladding nanostructured AgNWs-MoS2 electrode material for high-rate and long-life transparent in-plane micro-supercapacitor. Energy Storage Mater. 2019, 16, 212-219.
[98]
Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers. J. Mater. Chem. A 2014, 2, 8288-8293.
[99]
Zhang, L. D.; Liu, L. J.; Liu, C. F.; Li, X.; Liu, F. S.; Zhao, W. Q.; Wang, S.; Wu, F. M.; Zhang, G. Y. Photolithographic fabrication of graphene-based all-solid-state planar on-chip microsupercapacitors with ultrahigh power characteristics. J. Appl. Phys. 2019, 126, 164308.
[100]
Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510-2519.
[101]
Yin, Y. J.; Wang, X. F.; You, Z. Integration of ruthenium oxide-carbon nanotube composites with three-dimensional interdigitated microelectrodes for the creation of on-chip supercapacitors. Int. J. Electrochem. Sci. 2017, 12, 3883-3906.
[102]
Peng, Z. W.; Lin, J.; Ye, R. Q.; Samuel, E. L. G.; Tour, J. M. Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414-3419.
[103]
Chen, Y. J.; Xu, B. G.; Xu, J. T.; Wen, J. F.; Hua, T.; Kan, C. W. Graphene-based in-planar supercapacitors by a novel laser-scribing, in-situ reduction and transfer-printed method on flexible substrates. J. Power Sources 2019, 420, 82-87.
[104]
Shi, L.; Wang, Y.; Zou, P. C.; Wang, X. Y.; Wu, D.; Wang, R. H.; Yang, C. Laser processed micro-supercapacitors based on carbon nanotubes/manganese dioxide nanosheets composite with excellent electrochemical performance and aesthetic property. Chin. Chem. Lett. 2018, 29, 592-595.
[105]
Mao, X. L.; Xu, J. H.; He, X.; Yang, W. Y.; Yang, Y. J.; Xu, L.; Zhao, Y. T.; Zhou, Y. J. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes. Appl. Surf. Sci. 2018, 435, 1228-1236.
[106]
Chen, B. L.; Jiang, Y. Z.; Tang, X. H.; Pan, Y. Y.; Hu, S. Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 2017, 9, 28433-28440.
[107]
Choi, K. H.; Yoo, J.; Lee, C. K.; Lee, S. Y. All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 2016, 9, 2812-2821.
[108]
Yu, W.; Zhou, H.; Li, B. Q.; Ding, S. J. 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 4597-4604.
[109]
Kim, S. K.; Koo, H. J.; Lee, A.; Braun, P. V. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 2014, 26, 5108-5112.
[110]
Wang, C. L.; Wu, X.; Xu, H. J.; Zhu, Y. J.; Liang, F.; Luo, C.; Xia, Y.; Xie, X. Y.; Zhang, J.; Duan, C. G. VSe2/carbon-nanotube compound for all solid-state flexible in-plane supercapacitor. Appl. Phys. Lett. 2019, 114, 023902.
[111]
Nie, B. B.; Li, X. M.; Shao, J. Y.; Li, C. M.; Sun, P. C.; Wang, Y. C.; Tian, H. M.; Wang, C. H.; Chen, X. L. Scalable fabrication of high-performance micro-supercapacitors by embedding thick interdigital microelectrodes into microcavities. Nanoscale 2019, 11, 19772-19782.
[112]
Xi, S. P.; Kang, Y. R.; Qu, S. X.; Han, S. S. Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Mater. Lett. 2016, 175, 126-130.
[113]
Lee, S. Y.; Choi, K. H.; Choi, W. S.; Kwon, Y. H.; Jung, H. R.; Shin, H. C.; Kim, J. Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci. 2013, 6, 2414-2423.
[114]
Vellacheri, R.; Zhao, H. P.; Mühlstädt, M.; Al-Haddad, A.; Jandt, K. D.; Lei, Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Adv. Funct. Mater. 2017, 27, 1606696.
[115]
Chen, Y. J.; Xu, B. G.; Wen, J. F.; Gong, J. L.; Hua, T.; Kan, C. W.; Deng, J. W. Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 2018, 14, 1704373.
[116]
Pu, X.; Li, L. X.; Liu, M. M.; Jiang, C. Y.; Du, C. H.; Zhao, Z. F.; Hu, W. G.; Wang, Z. L. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 2016, 28, 98-105.
[117]
Liu, L. B.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. J. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 2015, 6, 7260.
[118]
Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182-186.
[119]
Zhang, X.; Li, Q.; Holesinger, T. G.; Arendt, P. N.; Huang, J.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X.; Zhao, Y. et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 2007, 19, 4198-4201.
[120]
Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew. Chem., Int. Ed. 2011, 50, 1815-1819.
[121]
Jang, Y.; Kim, S. M.; Spinks, G. M.; Kim, S. J. Carbon nanotube yarn for fiber-shaped electrical sensors, actuators, and energy storage for smart systems. Adv. Mater. 2020, 32, 1902670.
[122]
Ren, J.; Li, L.; Chen, C.; Chen, X. L.; Cai, Z. B.; Qiu, L. B.; Wang, Y. G.; Zhu, X. R.; Peng, H. S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 2013, 25, 1155-1159.
[123]
Shang, Y. Y.; Wang, C. H.; He, X. D.; Li, J. J.; Peng, Q. Y.; Shi, E. Z.; Wang, R. G.; Du, S. Y.; Cao, A. Y.; Li, Y. B. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy 2015, 12, 401-409.
[124]
Sun, H.; You, X.; Deng, J.; Chen, X. L.; Yang, Z. B.; Ren, J.; Peng, H. S. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv. Mater. 2014, 26, 2868-2873.
[125]
Ma, Y. W.; Li, P.; Sedloff, J. W.; Zhang, X.; Zhang, H. B.; Liu, J. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. ACS Nano 2015, 9, 1352-1359.
[126]
Wang, Q. F.; Wu, Y. L.; Li, T.; Zhang, D. H.; Miao, M. H.; Zhang, A. Q. High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. J. Mater. Chem. A 2016, 4, 3828-3834.
[127]
Su, F. H.; Lv, X. M.; Miao, M. H. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 2015, 11, 854-861.
[128]
Liu, J. H.; Xu, X. Y.; Lu, W. B.; Xiong, X. B.; Ouyang, X.; Zhao, C. H.; Wang, F.; Qin, S. Y.; Hong, J. L.; Tang, J. N. et al. A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim. Acta 2018, 283, 366-373.
[129]
Choi, C.; Sim, H. J.; Spinks, G. M.; Lepró, X.; Baughman, R. H.; Kim, S. J. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor. Adv. Energy Mater. 2016, 6, 1502119.
[130]
Wang, H. M.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347-2356.
[131]
Zhu, S.; Zhang, H.; Chen, P.; Nie, L. H.; Li, C. H.; Li, S. K. Self-assembled three-dimensional hierarchical graphene hybrid hydrogels with ultrathin β-MnO2 nanobelts for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 1540-1548.
[132]
Zhang, H. H.; Wei, J.; Yan, Y.; Guo, Q. J.; Xie, L. Q.; Yang, Z. C.; He, J.; Qi, W.; Cao, Z. S.; Zhao, X. H. et al. Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application. J. Power Sources 2020, 450, 227616.
[133]
Choi, C.; Lee, J. A.; Choi, A. Y.; Kim, Y. T.; Lepró, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv. Mater. 2014, 26, 2059-2065.
[134]
Jeong, J. H.; Park, J. W.; Lee, D. W.; Baughman, R. H.; Kim, S. J. Electrodeposition of α-MnO2/γ-MnO2 on carbon nanotube for yarn supercapacitor. Sci. Rep. 2019, 9, 11271.
[135]
Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.
[136]
Chaudhari, N. K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564-24579.
[137]
Pang, J. B.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z. F.; Rummeli, M. H. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 2019, 48, 72-133.
[138]
Li, Z. X.; Ma, C.; Wen, Y. Y.; Wei, Z. T.; Xing, X. F.; Chu, J. M.; Yu, C. C.; Wang, K. L.; Wang, Z. K. Highly conductive dodecaborate/MXene composites for high performance supercapacitors. Nano Res. 2020, 13, 196-202.
[139]
Wang, Z. Y.; Qin, S.; Seyedin, S.; Zhang, J. Z.; Wang, J. T.; Levitt, A.; Li, N.; Haines, C.; Ovalle-Robles, R.; Lei, W. W. et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018, 14, 1802225.
[140]
Park, J. W.; Lee, D. Y.; Kim, H.; Hyeon, J. S.; De Andrade, M. J.; Baughman, R. H.; Kim, S. J. Highly loaded MXene/carbon nanotube yarn electrodes for improved asymmetric supercapacitor performance. MRS Commun. 2019, 9, 114-121.
[141]
Cheng, H. H.; Dong, Z. L.; Hu, C. G.; Zhao, Y.; Hu, Y.; Qu, L. T.; Chen, N.; Dai, L. M. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 2013, 5, 3428-3434.
[142]
Liu, N. S.; Ma, W. Z.; Tao, J. Y.; Zhang, X. H.; Su, J.; Li, L. Y.; Yang, C.X.; Gao, Y. H.; Golberg, D.; Bando, Y. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv. Mater. 2013, 25, 4925-4931.
[143]
Sun, J. F.; Huang, Y.; Fu, C. X.; Wang, Z. Y.; Huang, Y.; Zhu, M. S.; Zhi, C. Y.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230-237.
[144]
Zhang, D. H.; Miao, M. H.; Niu, H. T.; Wei, Z. X. Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 2014, 8, 4571-4579.
Nano Research
Pages 1825-1841
Cite this article:
Zhu S, Ni J, Li Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, 13(7): 1825-1841. https://doi.org/10.1007/s12274-020-2729-5
Topics:
Part of a topical collection:

1130

Views

174

Crossref

N/A

Web of Science

177

Scopus

12

CSCD

Altmetrics

Received: 29 November 2019
Revised: 13 February 2020
Accepted: 23 February 2020
Published: 31 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return