AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles

Juan Jin1Fang Yang1( )Bin Li1Dong Liu2,3Lihong Wu4Yan Li1Ning Gu1( )
State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
West Anhui University, Lu’an 237012, China
Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Lu’an 237012, China
CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang 050035, China
Show Author Information

Graphical Abstract

Abstract

Micro/nanobubbles play an essential role in ultrasound-based biomedical applications. Here, a green and simple method to fabricate micro/nanobubbles was developed by the temperature-regulated self-assembly of lipids in the presence of free bubbles. The self-assembly mechanism of lipids interacting with gas-water interfaces was investigated, and the ultrasound imaging of the obtained lipid-encapsulated bubbles (LBs) was further confirmed. Above the phase transition temperature (Tm), fluid lipids transform from vesicles to micelles, and further assemble to the free bubbles interface to be a compressed monolayer, resulting in lipid shelled microbubbles. Cooling below Tm induces the lipid shell to glassy state and stables the LBs. Moreover, increasing the 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2K) content in lipids formulation can further manipulate the shell curvature and reduce the LBs size into nanobubbles. LBs with diameters of 1.68 ± 0.11 μm, 704 ± 7 nm and 208 ± 6 nm were successfully prepared. The in vitro and in vivo ultrasound imaging results showed that all of the LBs had excellent echogenicity. The nanosized LBs revealed elongated imaging duration time and greater microvascular details for the liver tissue. Avoiding the organic solvent and complicated multiple preparation process, this method has great potential in construction of various multifunctional micro/nanobubbles with size control for theranostic applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2732_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Upadhyay, A.; Dalvi, S. V. Microbubble formulations: Synthesis, stability, modeling and biomedical applications. Ultrasound Med. Biol. 2019, 45, 301-343.
[2]
Dichiarante, V.; Milani, R.; Metrangolo, P. Natural surfactants towards a more sustainable fluorine chemistry. Green Chem. 2018, 20, 13-27.
[3]
Zhao, Y. Z.; Du, L. N.; Lu, C. T.; Jin, Y. G.; Ge, S. P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomedicine 2013, 8, 1621-1633.
[4]
Xing, Z. W.; Ke, H. T.; Wang, J. R.; Zhao, B.; Yue, X. L.; Dai, Z. F.; Liu, J. B. Novel ultrasound contrast agent based on microbubbles generated from surfactant mixtures of span 60 and polyoxyethylene 40 stearate. Acta Biomater. 2010, 6, 3542-3549.
[5]
Liu, D.; Zhang, Z. H.; Qin, Z. G.; Xing, J.; Liu, Y.; Jin, J.; Yang, F.; Gu, N. Sinapultide-loaded lipid microbubbles and the stabilization effect of sinapultide on the shells of lipid microbubbles. J. Mater. Chem. B 2018, 6, 1335-1341.
[6]
Segers, T.; De Rond, L.; de Jong, N.; Borden, M.; Versluis, M. Stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at high production rates. Langmuir 2016, 32, 3937-3944.
[7]
Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901-986.
[8]
Yu, M. R.; Song, W. Y.; Tian, F. L.; Dai, Z.; Zhu, Q. L.; Ahmad, E.; Guo, S. Y.; Zhu, C. L.; Zhong, H. J.; Yuan, Y. C. et al. Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels. Proc. Natl. Acad. Sci. USA 2019, 116, 5362-5369.
[9]
Davies, T. S.; Ketner, A. M.; Raghavan, S. R. Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J. Am. Chem. Soc. 2006, 128, 6669-6675.
[10]
Yin, H. Q.; Zhou, Z. K.; Huang, J. B.; Zheng, R.; Zhang, Y. Y. Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew. Chem., Int. Ed. 2003, 42, 2188-2191.
[11]
Park, J. I.; Nie, Z. H.; Kumachev, A.; Abdelrahman, A. I.; Binks, B. P.; Stone, H. A.; Kumacheva, E. A microfluidic approach to chemically driven assembly of colloidal particles at gas-liquid interfaces. Angew. Chem., Int. Ed. 2009, 48, 5300-5304.
[12]
Zhang, Y.; Wu, J.; Wang, H. Z.; Meredith, J. C.; Behrens, S. H. Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid. Angew. Chem., Int. Ed. 2014, 53, 13385-13389.
[13]
Peng, Y. F.; Seekell, R. P.; Cole, A. R.; Lamothe, J. R.; Lock, A. T.; van den Bosch, S.; Tang, X. Q.; Kheir, J. N.; Polizzotti, B. D. Interfacial nanoprecipitation toward stable and responsive microbubbles and their use as a resuscitative fluid. Angew. Chem., Int. Ed. 2018, 57, 1271-1276.
[14]
Ravula, T.; Ramadugu, S. K.; Di Mauro, G.; Ramamoorthy, A. Bioinspired, size-tunable self-assembly of polymer-lipid bilayer nanodiscs. Angew. Chem., Int. Ed. 2017, 56, 11466-11470.
[15]
Gonzenbach, U. T.; Studart, A. R.; Tervoort, E.; Gauckler, L. J. Ultrastable particle-stabilized foams. Angew. Chem., Int. Ed. 2006, 45, 3526-3530.
[16]
Agarwal, A.; Ng, W. J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175-1180.
[17]
Temesgen, T.; Bui, T. T.; Han, M.; Kim, T. I.; Park, H. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Adv. Colloid Interface Sci. 2017, 246, 40-51.
[18]
Ebina, K.; Shi, K.; Hirao, M.; Hashimoto, J.; Kawato, Y.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 2013, 8, e65339.
[19]
Shu, L.; Oshita, S.; Makino, Y.; Wang, Q. H.; Kawagoe, Y.; Uchida, T. Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustainable Chem. Eng. 2016, 4, 1347-1353.
[20]
Jin, J.; Feng, Z. Q.; Yang, F.; Gu, N. Bulk nanobubbles fabricated by repeated compression of microbubbles. Langmuir 2019, 35, 4238-4245.
[21]
Schneider, M. Characteristics of sonovue™. Echocardiography 1999, 16, 743-746.
[22]
Lipp, M. M.; Lee, K. Y. C.; Takamoto, D. Y.; Zasadzinski, J. A.; Waring, A. J. Coexistence of buckled and flat monolayers. Phys. Rev. Lett. 1998, 81, 1650-1653.
[23]
Schneider, M. F.; Marsh, D.; Jahn, W.; Kloesgen, B.; Heimburg, T. Network formation of lipid membranes: Triggering structural transitions by chain melting. Proc. Natl. Acad. Sci. USA 1999, 96, 14312-14317.
[24]
Brumm, T.; Jørgensen, K.; Mouritsen, O. G.; Bayerl, T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/ distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys. J. 1996, 70, 1373-1379.
[25]
Borden, M. A.; Martinez, G. V.; Ricker, J.; Tsvetkova, N.; Longo, M.; Gillies, R. J.; Dayton, P. A.; Ferrara, K. W. Lateral phase separation in lipid-coated microbubbles. Langmuir 2006, 22, 4291-4297.
[26]
Wu, F. G.; Luo, J. J.; Yu, Z. W. Infrared spectroscopy reveals the nonsynchronicity phenomenon in the glassy to fluid micellar transition of DSPE-PEG2000 aqueous dispersions. Langmuir 2010, 26, 12777-12784.
[27]
Wu, F. G.; Chen, L.; Yu, Z. W. Water mediates the metastable crystal-to-stable crystal phase transition process in phospholipid aqueous dispersion. J. Phys. Chem. B 2009, 113, 869-872.
[28]
Kastantin, M.; Ananthanarayanan, B.; Karmali, P.; Ruoslahti, E.; Tirrell, M. Effect of the lipid chain melting transition on the stability of DSPE-PEG(2000) micelles. Langmuir 2009, 25, 7279-7286.
[29]
Kim, D. H.; Costello, M. J.; Duncan, P. B.; Needham, D. Mechanical properties and microstructure of polycrystalline phospholipid monolayer shells: Novel solid microparticles. Langmuir 2003, 19, 8455-8466.
[30]
Borden, M. A.; Pu, G.; Runner, G. J.; Longo, M. L. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles. Colloid Surf. B-Biointerfaces 2004, 35, 209-223.
[31]
Talu, E.; Hettiarachchi, K.; Powell, R. L.; Lee, A. P.; Dayton, P. A.; Longo, M. L. Maintaining monodispersity in a microbubble population formed by flow-focusing. Langmuir 2008, 24, 1745-1749.
[32]
Yin, T. H.; Wang, P.; Zheng, R. Q.; Zheng, B. W.; Cheng, D.; Zhang, X. L.; Shuai, X. T. Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomedicine 2012, 7, 895-904.
[33]
Cai, W. B.; Yang, H. L.; Zhang, J.; Yin, J. K.; Yang, Y. L.; Yuan, L. J.; Zhang, L.; Duan, Y. Y. The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci. Rep. 2015, 5, 13725.
[34]
Warriner, H. E.; Idziak, S. H.; Slack, N. L.; Davidson, P.; Safinya, C. R. Lamellar biogels: Fluid-membrane-based hydrogels containing polymer lipids. Science 1996, 271, 969-973.
[35]
Binder, W. H.; Barragan, V.; Menger, F. M. Domains and rafts in lipid membranes. Angew. Chem., Int. Ed. 2003, 42, 5802-5827.
[36]
Simon, J.; Kühner, M.; Ringsdorf, H.; Sackmanna, E. Polymer-induced shape changes and capping in giant liposomes. Chem. Phys. Lipids 1995, 76, 241-258.
[37]
Hwang, T. L.; Lin, Y. K.; Chi, C. H.; Huang, T. H.; Fang, J. Y. Development and evaluation of perfluorocarbon nanobubbles for apomorphine delivery. J. Pharm. Sci. 2009, 98, 3735-3747.
Nano Research
Pages 999-1007
Cite this article:
Jin J, Yang F, Li B, et al. Temperature-regulated self-assembly of lipids at free bubbles interface: A green and simple method to prepare micro/nano bubbles. Nano Research, 2020, 13(4): 999-1007. https://doi.org/10.1007/s12274-020-2732-x
Topics:

884

Views

14

Crossref

N/A

Web of Science

15

Scopus

2

CSCD

Altmetrics

Received: 10 January 2020
Revised: 24 February 2020
Accepted: 25 February 2020
Published: 11 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return