AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

On-demand production of hydrogen by reacting porous silicon nanowires with water

Rui Ning1,§Yue Jiang2,§Yitian Zeng1Huaxin Gong3Jiheng Zhao2Jeffrey Weisse2Xinjian Shi2Thomas M. Gill2Xiaolin Zheng2( )
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA

§ Rui Ning and Yue Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

On-demand hydrogen generation is desired for fuel cells, energy storage, and clean energy applications. Silicon nanowires (SiNWs) and nanoparticles (SiNPs) have been reported to generate hydrogen by reacting with water, but these processes usually require external assistance, such as light, electricity or catalysts. Herein, we demonstrate that a porous SiNWs array, which is fabricated via the metal-assisted anodic etching (MAAE) method, reacts with water under ambient and dark conditions without any energy inputs. The reaction between the SiNWs and water generates hydrogen at a rate that is about ten times faster than the reported rates of other Si nanostructures. Two possible sources of enhancement are discussed: SiNWs maintain their high specific surface area as they don’t agglomerate, and the intrinsic strain of the nanowires promotes the reactivity. Moreover, the porous SiNWs array is portable, reusable, and environmentally friendly, yielding a promising route to produce hydrogen in a distributed manner.

Electronic Supplementary Material

Download File(s)
12274_2020_2734_MOESM1_ESM.pdf (1.3 MB)

References

[1]
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972-974.
[2]
Edwards, P. P.; Kuznetsov, V. L.; David, W. I. F.; Brandon, N. P. Hydrogen and fuel cells: Towards a sustainable energy future. Energy Policy 2008, 36, 4356-4362.
[3]
Jain, I. P. Hydrogen the fuel for 21st century. Int. J. Hydrog. Energy 2009, 34, 7368-7378.
[4]
Sharma, S.; Ghoshal, S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sust. Energ. Rev. 2015, 43, 1151-1158.
[5]
Brandon, N. P.; Kurban, Z. Clean energy and the hydrogen economy. Philos. Trans. Roy. Soc. A 2017, 375, 20160400.
[6]
Staffell, I.; Scamman, D.; Velazquez Abad, A.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463-491.
[7]
Winter, C. J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. Int. J. Hydrog. Energy 2009, 34, S1-S52.
[8]
Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244-260.
[9]
Erogbogbo, F.; Lin, T.; Tucciarone, P. M.; LaJoie, K. M.; Lai, L.; Patki, G. D.; Prasad, P. N.; Swihart, M. T. On-demand hydrogen generation using nanosilicon: Splitting water without light, heat, or electricity. Nano Lett. 2013, 13, 451-456.
[10]
Kobayashi, Y.; Matsuda, S.; Imamura, K.; Kobayashi, H. Hydrogen generation by reaction of Si nanopowder with neutral water. J. Nanopart. Res. 2017, 19, 176.
[11]
Goller, B.; Kovalev, D.; Sreseli, O. Nanosilicon in water as a source of hydrogen: Size and pH matter. Nanotechnology 2011, 22, 305402.
[12]
Bahruji, H.; Bowker, M.; Davies, P. R. Photoactivated reaction of water with silicon nanoparticles. Int. J. Hydrog. Energy 2009, 34, 8504-8510.
[13]
Zhan, C. Y.; Chu, P. K.; Ren, D.; Xin, Y. C.; Huo, K. F.; Zou, Y.; Huang, N. K. Release of hydrogen during transformation from porous silicon to silicon oxide at normal temperature. Int. J. Hydrog. Energy 2011, 36, 4513-4517.
[14]
Weisse, J. M.; Lee, C. H.; Kim, D. R.; Cai, L. L.; Rao, P. M.; Zheng, X. L. Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett. 2013, 13, 4362-4368.
[15]
Weisse, J. M.; Reifenberg, J. P.; Miller, L. M.; Scullin, M. L. Ultra-long silicon nanostructures, and methods of forming and transferring the same. U.S. Patent 9691849, June 27, 2017.
[16]
Lai, C. Q.; Zheng, W.; Choi, W. K.; Thompson, C. V. Metal assisted anodic etching of silicon. Nanoscale 2015, 7, 11123-11134.
[17]
Sailor, M. J. Porous Silicon in Practice: Preparation, Characterization and Applications; Wiley-VCH: Weinheim, 2012.
[18]
Ramage, J. Energy, A Guidebook; Oxford University Press: New York, USA, 1983.
[19]
Unagami, T. Intrinsic stress in porous silicon layers formed by anodization in HF solution. J. Electrochem. Soc. 1997, 144, 1835.
[20]
Weisse, J. M.; Marconnet, A. M.; Kim, D. R.; Rao, P. M.; Panzer, M. A.; Goodson, K. E.; Zheng, X. L. Thermal conductivity in porous silicon nanowire arrays. Nanoscale Res. Lett. 2012, 7, 554.
[21]
Haynes, C. L.; van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105, 5599-5611.
[22]
Li, X.; Bohn, P. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572-2574.
[23]
Cheng, S. L.; Chung, C. H.; Lee, H. C. A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates. J. Electrochem. Soc. 2008, 155, D711-D714.
[24]
Dai, F.; Zai, J. T.; Yi, R.; Gordin, M. L.; Sohn, H.; Chen, S. R.; Wang, D. H. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat. Commun. 2014, 5, 3605.
[25]
Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174-181.
[26]
Ogata, Y. H.; Tsuboi, T.; Sakka, T.; Naito, S. Oxidation of porous silicon in dry and wet environments under mild temperature conditions. J. Porous Mater. 2000, 7, 63-66.
[27]
Lee, C. H.; Kim, J. H.; Zou, C. Y.; Cho, I. S.; Weisse, J. M.; Nemeth, W.; Wang, Q.; van Duin, A. C. T.; Kim, T. S.; Zheng, X. L. Peel-and-stick: Mechanism study for efficient fabrication of flexible/ transparent thin-film electronics. Sci. Rep. 2013, 3, 2917.
[28]
Morita, M.; Ohmi, T.; Hasegawa, E.; Kawakami, M.; Ohwada, M. Growth of native oxide on a silicon surface. J. Appl. Phys. 1990, 68, 1272-1281.
[29]
Sirotti, F.; De Santis, M.; Rossi, G. Synchrotron-radiation photoemission and X-ray absorption of Fe silicides. Phys. Rev. B 1993, 48, 8299-8306.
[30]
Mazzoldi, P.; Carnera, A.; Caccavale, F.; Favaro, M. L.; Boscolo-Boscoletto, A.; Granozzi, G.; Bertoncello, R.; Battaglin, G. N and Ar ion-implantation effects in SiO2 films on Si single-crystal substrates. J. Appl. Phys. 1991, 70, 3528-3536.
[31]
Liao, W. S.; Lee, S. C. Water-induced room-temperature oxidation of Si-H and -Si-Si-bonds in silicon oxide. J. Appl. Phys. 1996, 80, 1171-1176.
[32]
Weisse, J. M. Fabrication and characterization of vertical silicon nanowire arrays: A promising building block for thermoelectric devices. Ph.D. Dissertation, Stanford University, CA, USA, 2013.
[33]
de la Peña, F.; Prestat, E.; Fauske, V. T.; Burdet, P.; Jokubauskas, P.; Nord, M.; Ostasevicius, T.; MacArthur, K. E.; Sarahan, M.; Johnstone, D. N. et al. Hyperspy/Hyperspy: Hyperspy V1.5.2 [Online]. http://doi.org/10.5281/zenodo.3396791 (accessed Sep 6, 2019).
Nano Research
Pages 1459-1464
Cite this article:
Ning R, Jiang Y, Zeng Y, et al. On-demand production of hydrogen by reacting porous silicon nanowires with water. Nano Research, 2020, 13(5): 1459-1464. https://doi.org/10.1007/s12274-020-2734-8
Topics:

1052

Views

15

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 31 October 2019
Revised: 07 February 2020
Accepted: 11 February 2020
Published: 19 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return