AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations

David H. ChoTian XieJohnson TruongAndrew C. StonerJong-in Hahm( )
Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
Show Author Information

Graphical Abstract

Abstract

Protein adsorption onto polymer surfaces is a very complex and ubiquitous phenomenon whose integrated process impacts essential applications in our daily life such as food packaging materials, health devices, diagnostic tools, and medical products. Increasingly, novel polymer materials with greater chemical intricacy and reduced dimensionality are used for various applications involving adsorbed proteins on their surfaces. Hence, the nature of protein-surface interactions to consider is becoming much more complicated than before. A large body of literature exists for protein adsorption. However, most of these investigations have focused on collectively measured, ensemble-averaged protein behaviors that occur on macroscale and chemically unvarying polymer surfaces instead of direct measurements at the single protein or sub-protein level. In addition, interrogations of protein-polymer adsorption boundaries in these studies were typically carried out by indirect methods, whose insights may not be suitably applied for explaining individual protein adsorption processes occurring onto nanostructured, chemically varying polymer surfaces. Therefore, an important gap in our knowledge still exists that needs to be systematically addressed via direct measurement means at the single protein and sub-protein level. Such efforts will require multifaceted experimental and theoretical approaches that can probe multilength scales of protein adsorption, while encompassing both single proteins and their collective ensemble behaviors at the length scale spanning from the nanoscopic all the way to the macroscopic scale. In this review, key research achievements in nanoscale protein adsorption to date will be summarized. Specifically, protein adsorption studies involving polymer surfaces with their defining feature dimensions and associated chemical partitions comparable to the size of individual proteins will be discussed in detail. In this regard, recent works bridging the crucial knowledge gap in protein adsorption will be highlighted. New findings of intriguing protein surface assembly behaviors and adsorption kinetics unique to nanoscale polymer templates will be covered. Single protein and sub-protein level approaches to reveal unique nanoscale protein-polymer surface interactions and protein surface assembly characteristics will be also emphasized. Potential advantages of these research endeavors in laying out fundamentally guided design principles for practical product development will then be discussed. Lastly, important research areas still needed to further narrow the knowledge gap in nanoscale protein adsorption will be identified.

References

[1]
Nakanishi, K.; Sakiyama, T.; Imamura, K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng .2001, 91, 233-244.
[2]
Dee, K. C.; Puleo, D. A.; Bizios, R. Protein-surface interactions. In Tissue-Biomaterial Interactions; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2002; pp 37-52.
[3]
Slack, S. M.; Horbett, T. A. The vroman effect: A critical review. In Proteins at Interfaces II: Fundamentals and Applications; Horbett, T. A.; Brash, J. L., Eds.; ACS: Washington, DC, USA, 1995; pp 112-128.
[4]
Warkentin, P. H.; Lundstrom, I.; Tengvall, P. Protein-protein interactions affecting proteins at surfaces. In Proteins at Interfaces II: Fundamentals and Applications; Horbett, T. A.; Brash, J. L., Eds.; ACS: Washignton, DC, USA, 1995; pp 163-180.
[5]
Latour, R. A. Biomaterials: Protein-surface interactions. In Encyclopedia of Biomaterials and Biomedical Engineering; Informa Healthcare: New York, NY, USA, 2008; pp 270-284.
[6]
Ratner, B. D.; Bryant, S. J. Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng .2004, 6, 41-75.
[7]
Horbett, T. A. The role of adsorbed proteins in tissue response to biomaterials. In Biomaterials Science: An Introduction to Materials in Medicine; Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E., Eds.; Elsevier Academic Press: New York, NY, USA, 2004; pp 237-246.
[8]
Ramsden, J. J. Puzzles and paradoxes in protein adsorption. Chem. Soc. Rev .1995, 24, 73-78.
[9]
Hlady, V.; Buijs, J. Protein adsorption on solid surfaces. Curr. Opin. Biotechnol .1996, 7, 72-77.
[10]
Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol .2004, 14, 110-115.
[11]
Firkowska-Boden, I.; Zhang, X. Y.; Jandt, K. D. Controlling protein adsorption through nanostructured polymeric surfaces. Adv. Healthc. Mater .2018, 7, 1700995.
[12]
Talapatra, A.; Rouse, R.; Hardiman, G. Protein microarrays: Challenges and promises. Pharmacogenomics 2002, 3, 1-10.
[13]
Ekins, R.; Chu, F. Immunoassay and other ligand assays: Present status and future trends. J. Int. Fed. Clin. Chem .1997, 9, 100-109.
[14]
Gong, P.; Grainger, D. W. Microarrays: Methods and Protocols, 2nd ed.; Humana Press: NJ, 2007.
[15]
MacBeath, G. Protein microarrays and proteomics. Nat. Genet .2002, 32, 526-532.
[16]
MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
[17]
Pavlickova, P.; Schneider, E. M.; Hug, H. Advances in recombinant antibody microarrays. Clin. Chim. Acta 2004, 343, 17-35.
[18]
Templin, M. F.; Stoll, D.; Schrenk, M.; Traub, P. C.; Vöhringer, C. F.; Joos, T. O. Protein microarray technology. Trends Biotechnol .2002, 20, 160-166.
[19]
Xu, Q. C.; Lam, K. S. Protein and chemical microarrays-powerful tools for proteomics. J. Biomed. Biotechnol .2003, 2003, 257-266.
[20]
Horbett, T. A. Biological activity of adsorbed proteins. In Biopolymers at Interfaces; Malmsten, M., Ed.; CRC Press: New York, NY, USA, 2003; pp 393-414.
[21]
Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine, 3rd ed.; Elsevier Science: Waltham, MA, USA, 2012.
[22]
Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: In vitro and in vivo studies. J. Biomater. Sci. Polym. Ed .2002, 13, 367-390.
[23]
Wei, Q.; Becherer, T.; Angioletti-Uberti, S.; Dzubiella, J.; Wischke, C.; Neffe, A. T.; Lendlein, A.; Ballauff, M.; Haag, R. Protein interactions with polymer coatings and biomaterials. Angew. Chem., Int. Ed .2014, 53, 8004-8031.
[24]
Liao, J. W.; Zhu, Y.; Zhou, Z. N.; Chen, J. Q.; Tan, G. X.; Ning, C. Y.; Mao, C. B. Reversibly controlling preferential protein adsorption on bone implants by using an applied weak potential as a switch. Angew. Chem., Int. Ed .2014, 53, 13068-13072.
[25]
Joh, D. Y.; Hucknall, A. M.; Wei, Q. S.; Mason, K. A.; Lund, M. L.; Fontes, C. M.; Hill, R. T.; Blair, R.; Zimmers, Z.; Achar, R. K. et al. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7054-E7062.
[26]
Hahm, J. I. Polymeric surface-mediated, high-density nano-assembly of functional protein arrays. J. Biomed. Nanotechnol .2011, 7, 731-742.
[27]
Hahm, J. Fundamentals of nanoscale polymer-protein interactions and potential contributions to solid-state nanobioarrays. Langmuir 2014, 30, 9891-9904.
[28]
Denis, F. A.; Hanarp, P.; Sutherland, D. S.; Gold, J.; Mustin, C.; Rouxhet, P. G.; Dufrêne, Y. F. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 2002, 18, 819-828.
[29]
Lord, M. S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010, 5, 66-78.
[30]
Cai, K. Y.; Bossert, J.; Jandt, K. D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloids Surf. B: Biointerfaces 2006, 49, 136-144.
[31]
Laforgue, A.; Bazuin, C. G.; Prud’homme, R. E. A Study of the supramolecular approach in controlling diblock copolymer nanopatterning and nanoporosity on surfaces. Macromolecules 2006, 39, 6473-6482.
[32]
Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc .2012, 134, 2139-2147.
[33]
Shull, K. R. Mean-field theory of block copolymers: Bulk melts, surfaces, and thin films. Macromolecules 1992, 25, 2122-2133.
[34]
Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem .1990, 41, 525-557.
[35]
Fredrickson, G. H.; Bates, F. S. Dynamics of block copolymers: Theory and experiment. Annu. Rev. Mater. Sci .1996, 26, 501-550.
[36]
Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci .2007, 32, 1152-1204.
[37]
Malmström, J.; Travas-Sejdic, J. Block copolymers for protein ordering. J. Appl. Polym. Sci .2014, 131, 40360.
[38]
Hahm, J.; Sibener, S. J. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology. J. Chem. Phys .2001, 114, 4730-4740.
[39]
Morkved, T. L.; Lopes, W. A.; Hahm, J.; Sibener, S. J.; Jaeger, H. M. Silicon nitride membrane substrates for the investigation of local structure in polymer thin films. Polymer 1998, 39, 3871-3875.
[40]
Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter. Science 1997, 276, 1401-1404.
[41]
Thomas, E. L.; Lescanec, R. L. Phase morphology in block copolymer systems. Phil. Trans. R. Soc. London A 1994, 348, 149-166.
[42]
Matsen, M. W. Self-assembly of block copolymers in thin films. Curr. Opin. Colloid Interface Sci .1998, 3, 40-47.
[43]
Fredrickson, G. H. Surface ordering phenomena in block copolymer melts. Macromolecules 1987, 20, 2535-2542.
[44]
Song, S.; Milchak, M.; Zhou, H. B.; Lee, T.; Hanscom, M.; Hahm, J. I. Elucidation of novel nanostructures by time-lapse monitoring of polystyrene-block-polyvinylpyridine under chemical treatment. Langmuir 2012, 28, 8384-8391.
[45]
Song, S.; Milchak, M.; Zhou, H. B.; Lee, T.; Hanscom, M.; Hahm, J. I. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces. Nanotechnology 2013, 24, 095601.
[46]
Li, X.; Peng, J.; Wen, Y.; Kim, D. H.; Knoll, W. Morphology change of asymmetric diblock copolymer micellar films during solvent annealing. Polymer 2007, 48, 2434-2443.
[47]
Peng, J.; Kim, D. H.; Knoll, W.; Xuan, Y.; Li, B. Y.; Han, Y. C. Morphologies in solvent-annealed thin films of symmetric diblock copolymer. J. Chem. Phys .2006, 125, 064702.
[48]
Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32-38.
[49]
Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 1995, 28, 8796-8806.
[50]
Rechendorff, K.; Hovgaard, M. B.; Foss, M.; Zhdanov, V. P.; Besenbacher, F. Enhancement of protein adsorption induced by surface roughness. Langmuir 2006, 22, 10885-10888.
[51]
Roach, P.; Farrar, D.; Perry, C. C. Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc .2005, 127, 8168-8173.
[52]
Han, M.; Sethuraman, A.; Kane, R. S.; Belfort, G. Nanometer-scale roughness having little effect on the amount or structure of adsorbed protein. Langmuir 2003, 19, 9868-9872.
[53]
Roach, P.; Farrar, D.; Perry, C. C. Surface tailoring for controlled protein adsorption: Effect of topography at the nanometer scale and chemistry. J. Am. Chem. Soc .2006, 128, 3939-3945.
[54]
Cheng, Y. L.; Darst, S. A.; Robertson, C. R. Bovine serum albumin adsorption and desorption rates on solid surfaces with varying surface properties. J. Colloid Interface Sci .1987, 118, 212-223.
[55]
Wertz, C. F.; Santore, M. M. Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: Single-species and competitive behavior. Langmuir 1999, 15, 8884-8894.
[56]
Wertz, C. F.; Santore, M. M. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: Single-species and competitive behavior. Langmuir 2001, 17, 3006-3016.
[57]
Wertz, C. F.; Santore, M. M. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 2002, 18, 1190-1199.
[58]
Vroman, L.; Adams, A. L.; Fischer, G. C.; Munoz, P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 1980, 55, 156-159.
[59]
Ying, P. Q.; Yu, Y.; Jin, G.; Tao, Z. L. Competitive protein adsorption studied with atomic force microscopy and imaging ellipsometry. Colloids Surf. B: Biointerfaces 2003, 32, 1-10.
[60]
Day, R.; Daggett, V. Ensemble versus single-molecule protein unfolding. Proc. Natl. Acad. Sci. USA 2005, 102, 13445-13450.
[61]
McLoughlin, S. Y.; Kastantin, M.; Schwartz, D. K.; Kaar, J. L. Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc. Natl. Acad. Sci. USA 2013, 110, 19396-19401.
[62]
Tinoco, I.; Gonzalez, R. L. Biological mechanisms, one molecule at a time. Genes Dev .2011, 25, 1205-1231.
[63]
Migliorini, E.; Weidenhaupt, M.; Picart, C. Practical guide to characterize biomolecule adsorption on solid surfaces (review). Biointerphases 2018, 13, 06D303.
[64]
Song, S.; Ravensbergen, K.; Alabanza, A.; Soldin, D.; Hahm, J. I. Distinct adsorption configurations and self-assembly characteristics of fibrinogen on chemically uniform and alternating surfaces including block copolymer nanodomains. ACS Nano 2014, 8, 5257-5269.
[65]
Toscano, A.; Santore, M. M. Fibrinogen adsorption on three silica-based surfaces: Conformation and kinetics. Langmuir 2006, 22, 2588-2597.
[66]
Keller, T. F.; Schönfelder, J.; Reichert, J.; Tuccitto, N.; Licciardello, A.; Messina, G. M. L.; Marletta, G.; Jandt, K. D. How the surface nanostructure of polyethylene affects protein assembly and orientation. ACS Nano 2011, 5, 3120-3131.
[67]
Kidoaki, S.; Matsuda, T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope. Langmuir 1999, 15, 7639-7646.
[68]
Müller, D. J.; Janovjak, H.; Lehto, T.; Kuerschner, L.; Anderson, K. Observing structure, function and assembly of single proteins by AFM. Prog. Biophys. Mol. Biol .2002, 79, 1-43.
[69]
Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal. Biochem .1985, 150, 76-85.
[70]
Ball, V.; Ramsden, J. J. Absence of surface exclusion in the first stage of lysozyme adsorption is driven through electrostatic self-assembly. J. Phys. Chem. B 1997, 101, 5465-5469.
[71]
Calonder, C.; Tie, Y.; Van Tassel, P. R. History dependence of protein adsorption kinetics. Proc. Nat. Acad. Sci. USA 2001, 98, 10664-10669.
[72]
Tie, Y. R.; Calonder, C.; Van Tassel, P. R. Protein adsorption: Kinetics and history dependence. J. Colloid Interface Sci .2003, 268, 1-11.
[73]
Michel, R.; Pasche, S.; Textor, M.; Castner, D. G. Influence of PEG architecture on protein adsorption and conformation. Langmuir 2005, 21, 12327-12332.
[74]
Wagner, M. S.; McArthur, S. L.; Shen, M. C.; Horbett, T. A.; Castner, D. G. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): Detection of low amounts of adsorbed protein. J. Biomater. Sci. Polym. Ed .2002, 13, 407-428.
[75]
Hitchcock, A. P.; Leung, B. O.; Brash, J. L.; Scholl, A.; Doran, A. Soft X-ray spectromicroscopy of protein interactions with phase-segregated polymer surfaces. In Proteins at Interfaces III, State of the Art; American Chemical Society: Washington, DC, USA, 2012; pp 731-760.
[76]
Leung, B. O.; Wang, J.; Brash, J. L.; Hitchcock, A. P. Imaging hydrated albumin on a polystyrene-poly(methyl methacrylate) blend surface with X-ray spectromicroscopy. Langmuir 2009, 25, 13332-13335.
[77]
Welsch, N.; Lu, Y.; Dzubiella, J.; Ballauff, M. Adsorption of proteins to functional polymeric nanoparticles. Polymer 2013, 54, 2835-2849.
[78]
Wang, J.; Buck, S. M.; Chen, Z. Sum frequency generation vibrational spectroscopy studies on protein adsorption. J. Phys. Chem. B 2002, 106, 11666-11672.
[79]
Chen, X. Y.; Wang, J.; Paszti, Z.; Wang, F. L.; Schrauben, J. N.; Tarabara, V. V.; Schmaier, A. H.; Chen, Z. Ordered adsorption of coagulation factor XII on negatively charged polymer surfaces probed by sum frequency generation vibrational spectroscopy. Anal. Bioanal. Chem .2007, 388, 65-72.
[80]
Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z. Q.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S. Y. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem .2008, 80, 7894-7901.
[81]
Breault-Turcot, J.; Chaurand, P.; Masson, J. F. Unravelling nonspecific adsorption of complex protein mixture on surfaces with SPR and MS. Anal. Chem .2014, 86, 9612-9619.
[82]
Shumaker-Parry, J. S.; Campbell, C. T. Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem .2004, 76, 907-917.
[83]
Lau, K. H. A.; Bang, J.; Hawker, C. J.; Kim, D. H.; Knoll, W. Modulation of protein-surface interactions on nanopatterned polymer films. Biomacromolecules 2009, 10, 1061-1066.
[84]
Lau, K. H. A.; Bang, J.; Kim, D. H.; Knoll, W. Self-assembly of protein nanoarrays on block copolymer templates. Adv. Funct. Mater .2008, 18, 3148-3157.
[85]
Hänel, C.; Gauglitz, G. Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal. Bioanal. Chem .2002, 372, 91-100.
[86]
Passmore, L. A.; Russo, C. J. Specimen preparation for high-resolution cryo-EM. Methods Enzymol .2016, 579, 51-86.
[87]
Weisel, J. W.; Stauffacher, C. V.; Bullitt, E.; Cohen, C. A model for fibrinogen: Domains and sequence. Science 1985, 230, 1388-1391.
[88]
Weisel, J. W.; Phillips, G. N.; Cohen, C. A model from electron microscopy for the molecular structure of fibrinogen and fibrin. Nature 1981, 289, 263-267.
[89]
Veklich, Y. I.; Gorkun, O. V.; Medved, L. V.; Nieuwenhuizen, W.; Weisel, J. W. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J. Biol. Chem .1993, 268, 13577-13585.
[90]
Pfreundschuh, M.; Martinez-Martin, D.; Mulvihill, E.; Wegmann, S.; Muller, D. J. Multiparametric high-resolution imaging of native proteins by force-distance curve-based AFM. Nat. Protoc .2014, 9, 1113-1130.
[91]
Kumar, N.; Hahm, J. Nanoscale protein patterning using self-assembled diblock copolymers. Langmuir 2005, 21, 6652-6655.
[92]
Zhang, X. Y.; Firkowska-Boden, I.; Arras, M. M. L.; Kastantin, M. J.; Helbing, C.; Özogul, A.; Gnecco, E.; Schwartz, D. K.; Jandt, K. D. Nanoconfinement and sansetsukon-like nanocrawling govern fibrinogen dynamics and self-assembly on nanostructured polymeric surfaces. Langmuir 2018, 34, 14309-14316.
[93]
Leśnierowski, G.; Cegielska-Radziejewska, R. Potential possibilities of production, modification and practical application of lysozyme. Acta Sci. Pol. Technol. Aliment 2012, 11, 223-230.
[94]
Wei, T.; Carignano, M. A.; Szleifer, I. Lysozyme adsorption on polyethylene surfaces: Why are long simulations needed? Langmuir 2011, 27, 12074-12081.
[95]
Ley, K.; Christofferson, A.; Penna, M.; Winkler, D.; Maclaughlin, S.; Yarovsky, I. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin. Front. Mol. Biosci .2015, 2, 64.
[96]
Kisko, K.; Szilvay, G. R.; Vainio, U.; Linder, M. B.; Serimaa, R. Interactions of hydrophobin proteins in solution studied by small-angle X-ray scattering. Biophys. J .2008, 94, 198-206.
[97]
Francis, G. L. Albumin and mammalian cell culture: Implications for biotechnology applications. Cytotechnology 2010, 62, 1-16.
[98]
Pastor, M.; Esquisabel, A.; Pedraz, J. L. Biomedical applications of immobilized enzymes: An update. In Immobilization of Enzymes and Cells, 3rd ed.; Guisan, J. M., Ed.; Humana Press: Totowa, NJ, USA, 2013; pp 285-299.
[99]
Cahill, D. J. Protein and antibody arrays and their medical applications. J. Immunol. Methods 2001, 250, 81-91.
[100]
Wang, W.; Knovich, M. A.; Coffman, L. G.; Torti, F. M.; Torti, S. V. Serum ferritin: Past, present and future. Biochim. Biophys. Acta 2010, 1800, 760-769.
[101]
Joo, J. Y.; Amin, M. L.; Rajangam, T.; An, S. S. A. Fibrinogen as a promising material for various biomedical applications. Mol. Cell. Toxicol .2015, 11, 1-9.
[102]
Petrie, T. A.; Reyes, C. D.; Burns, K. L.; García, A. J. Simple application of fibronectin-mimetic coating enhances osseointegration of titanium implants. J. Cell. Mol. Med .2009, 13, 2602-2612.
[103]
Dargahi, M.; Nelea, V.; Mousa, A.; Omanovic, S.; Kaartinen, M. T. Electrochemical modulation of plasma fibronectin surface conformation enables filament formation and control of endothelial cell-surface interactions. RSC Adv .2014, 4, 47769-47780.
[104]
Kumar, N.; Parajuli, O.; Gupta, A.; Hahm, J. Elucidation of protein adsorption behavior on polymeric surfaces: Towards high density, high payload, protein templates. Langmuir 2008, 24, 2688-2694.
[105]
Kumar, N.; Parajuli, O.; Hahm, J. Two-dimensionally self-arranged protein nanoarrays on diblock copolymer templates. J. Phys. Chem. B 2007, 111, 4581-4587.
[106]
Palacio, M. L. B.; Schricker, S. R.; Bhushan, B. Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions. J. R. Soc. Interface 2011, 8, 630-640.
[107]
Kumar, N.; Parajuli, O.; Dorfman, A.; Kipp, D.; Hahm, J. Activity study of self-assembled proteins on nanoscale diblock copolymer templates. Langmuir 2007, 23, 7416-7422.
[108]
Parajuli, O.; Gupta, A.; Kumar, N.; Hahm, J. Evaluation of enzymatic activity on nanoscale polystyrene-block-polymethylmethacrylate diblock copolymer domains. J. Phys. Chem. B 2007, 111, 14022-14027.
[109]
Ibrahim, S.; Ito, T. Surface chemical properties of nanoscale domains on UV-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy. Langmuir 2010, 26, 2119-2123.
[110]
van Damme, H. S.; Beugeling, T.; Ratering, M. T.; Feijen, J. Protein adsorption from plasma onto poly(n-alkyl methacrylate) surfaces. J. Biomater. Sci. Polym. Ed .1991, 3, 69-84.
[111]
Nyström, M.; Järvinen, P. Modification of polysulfone ultrafiltration membranes with UV irradiation and hydrophilicity increasing agents. J. Memb. Sci .1991, 60, 275-296.
[112]
Bamford, C. H.; Cooper, S. L.; Tsuruta, T. The Vroman Effect; VSP BV: Utrecht, The Netherlands, 1992.
[113]
Jones, S.; Thornton, J. M. Principles of protein-protein interactions. Proc. Nat. Acad. Sci. USA 1996, 93, 13-20.
[114]
Musale, D. A.; Kulkarni, S. S. Fouling reduction in poly(acrylonitrile-co-acrylamide) ultrafiltration membranes. J. Memb. Sci .1996, 111, 49-56.
[115]
Hester, J. F.; Banerjee, P.; Mayes, A. M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 1999, 32, 1643-1650.
[116]
Douillard, R.; Daoud, M.; Aguié-Béghin, V. Polymer thermodynamics of adsorbed protein layers. Curr. Opin. Colloid Interface Sci .2003, 8, 380-386.
[117]
Absolom, D. R.; Zingg, W.; Neumann, A. W. Protein adsorption to polymer particles: Role of surface properties. J. Biomed. Mater. Res .1987, 21, 161-171.
[118]
Holmberg, M.; Stibius, K.; Larsen, N. B.; Hou, X. L. Competitive protein adsorption to polymer surfaces from human serum. J. Mater. Sci: Mater. Med .2008, 19, 2179-2185.
[119]
Gessner, A.; Waicz, R.; Lieske, A.; Paulke, B. R.; Mäder, K.; Müller, R. H. Nanoparticles with decreasing surface hydrophobicities: Influence on plasma protein adsorption. Int. J. Pharm .2000, 196, 245-249.
[120]
Malmsten, M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf. B: Biointerfaces 1995, 3, 297-308.
[121]
Xie, T.; Vora, A.; Mulcahey, P. J.; Nanescu, S. E.; Singh, M.; Choi, D. S.; Huang, J. K.; Liu, C. C.; Sanders, D. P.; Hahm, J. Surface assembly configurations and packing preferences of fibrinogen mediated by the periodicity and alignment control of block copolymer nanodomains. ACS Nano 2016, 10, 7705-7720.
[122]
Andrade, J. D.; Hlady, V.; Wei, A. P. Adsorption of complex proteins at interfaces. Pure Appl. Chem .1992, 64, 1777-1781.
[123]
Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci .2011, 162, 87-106.
[124]
Hung, A.; Mager, M.; Hembury, M.; Francesco, S.; Stevensc, M. M.; Yarovsky, I. Amphiphilic amino acids: A key to adsorbing proteins to nanopatterned surfaces. Chem. Sci .2013, 4, 928-937.
[125]
Kersten, B.; Wanker, E. E.; Hoheisel, J. D.; Angenendt, P. Multiplex approaches in protein microarray technology. Expert Rev. Proteomics 2005, 2, 499-510.
[126]
Mooney, J. F.; Hunt, A. J.; McIntosh, J. R.; Liberko, C. A.; Walba, D. M.; Rogers, C. T. Patterning of functional antibodies and other proteins by photolithography of silane monolayers. Proc. Natl. Acad. Sci. USA 1996, 93, 12287-12291.
[127]
Mrksich, M.; Whitesides, G. M. Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors. Trends Biotechnol .1995, 13, 228-235.
[128]
Shim, H. W.; Lee, J. H.; Hwang, T. S.; Rhee, Y. W.; Bae, Y. M.; Choi, J. S.; Han, J.; Lee, C. S. Patterning of proteins and cells on functionalized surfaces prepared by polyelectrolyte multilayers and micromolding in capillaries. Biosens. Bioelectron .2007, 22, 3188-3195.
[129]
Clemmens, J.; Hess, H.; Lipscomb, R.; Hanein, Y.; Böhringer, K. F.; Matzke, C. M.; Bachand, G. D.; Bunker, B. C.; Vogel, V. Mechanisms of microtubule guiding on microfabricated kinesin-coated surfaces: Chemical and topographic surface patterns. Langmuir 2003, 19, 10967-10974.
[130]
Falconnet, D.; Pasqui, D.; Park, S.; Eckert, R.; Schift, H.; Gobrecht, J.; Barbucci, R.; Textor, M. A novel approach to produce protein nanopatterns by combining nanoimprint lithography and molecular self-assembly. Nano Lett .2004, 4, 1909-1914.
[131]
Garno, J. C.; Amro, N. A.; Wadu-Mesthrige, K.; Liu, G. Y. Production of periodic arrays of protein nanostructures using particle lithography. Langmuir 2002, 18, 8186-8192.
[132]
Jiang, J.; Li, X. M.; Mak, W. C.; Trau, D. Integrated direct DNA/ protein patterning and microfabrication by focused ion beam milling. Adv. Mater .2008, 20, 1636-1643.
[133]
Lee, K. B.; Park, S. J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, 1702-1705.
[134]
Kenseth, J. R.; Harnisch, J. A.; Jones, V. W.; Porter, M. D. Investigation of approaches for the fabrication of protein patterns by scanning probe lithography. Langmuir 2001, 17, 4105-4112.
[135]
Mendoza, L. G.; McQuary, P.; Mongan, A.; Gangadharan, R.; Brignac, S.; Eggers, M. High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 1999, 27, 778-788.
[136]
Angenendt, P.; Glökler, J.; Konthur, Z.; Lehrach, H.; Cahill, D. J. 3D protein microarrays: Performing multiplex immunoassays on a single chip. Anal. Chem .2003, 75, 4368-4372.
[137]
Maury, P.; Escalante, M.; Péter, M.; Reinhoudt, D. N.; Subramaniam, V.; Huskens, J. Creating nanopatterns of his-tagged proteins on surfaces by nanoimprint lithography using specific NiNTA-histidine interactions. Small 2007, 3, 1584-1592.
[138]
Jeoung, E.; Duncan, B.; Wang, L. S.; Saha, K.; Subramani, C.; Wang, P. J.; Yeh, Y. C.; Kushida, T.; Engel, Y.; Barnes, M. D. et al. Fabrication of robust protein films using nanoimprint lithography. Adv. Mater .2015, 27, 6251-6255.
[139]
Blinka, E.; Loeffler, K.; Hu, Y.; Gopal, A.; Hoshino, K.; Lin, K.; Liu, X. W.; Ferrari, M.; Zhang, J. X. J. Enhanced microcontact printing of proteins on nanoporous silica surface. Nanotechnology 2010, 21, 415302.
[140]
Brooks, S. A.; Dontha, N.; Davis, C. B.; Stuart, J. K.; O'Neill, G.; Kuhr, W. G. Segregation of micrometer-dimension biosensor elements on a variety of substrate surfaces. Anal. Chem .2000, 72, 3253-3259.
[141]
Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides, G. M. Patterning proteins and cells using soft lithography. Biomaterials 1999, 20, 2363-2376.
[142]
Wadu-Mesthrige, K.; Xu, S.; Amro, N. A.; Liu, G. Y. Fabrication and imaging of nanometer-sized protein patterns. Langmuir 1999, 15, 8580-8583.
[143]
Taylor, Z. R.; Patel, K.; Spain, T. G.; Keay, J. C.; Jernigen, J. D.; Sanchez, E. S.; Grady, B. P.; Johnson, M. B.; Schmidtke, D. W. Fabrication of protein dot arrays via particle lithography. Langmuir 2009, 25, 10932-10938.
[144]
Hyun, J.; Chilkoti, A. Micropatterning biological molecules on a polymer surface using elastomeric microwells. J. Am. Chem. Soc .2001, 123, 6943-6944.
[145]
Suha, K. Y.; Seong, J.; Khademhosseini, A.; Laibinis, P. E.; Langer, R. A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. Biomaterials 2004, 25, 557-563.
[146]
Lee, N. Y.; Lim, J. R.; Kim, Y. S. Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosens. Bioelectron .2006, 21, 2188-2193.
[147]
Chiu, D. T.; Jeon, N. L.; Huang, S.; Kane, R. S.; Wargo, C. J.; Choi, I. S.; Ingber, D. E.; Whitesides, G. M. Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 2408-2413.
[148]
Delamarche, E.; Bernard, A.; Schmid, H.; Michel, B.; Biebuyck, H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 1997, 276, 779-781.
[149]
Patel, N.; Sanders, G. H. W.; Shakesheff, K. M.; Cannizzaro, S. M.; Davies, M. C.; Langer, R.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Atomic force microscopic analysis of highly defined protein patterns formed by microfluidic networks. Langmuir 1999, 15, 7252-7257.
[150]
Nishioka, G. M.; Markey, A. A.; Holloway, C. K. Protein damage in drop-on-demand printers. J. Am. Chem. Soc .2004, 126, 16320-16321.
[151]
Sumerel, J.; Lewis, J.; Doraiswamy, A.; Deravi, L. F.; Sewell, S. L.; Gerdon, A. E.; Wright, D. W.; Narayan, R. J. Piezoelectric ink jet processing of materials for medicaland biological applications. Biotechnol. J .2006, 1, 976-987.
[152]
Lee, K. B.; Lim, J. H.; Mirkin, C. A. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc .2003, 125, 5588-5589.
[153]
Salaita, K.; Lee, S. W.; Wang, X. F.; Huang, L.; Dellinger, T. M.; Liu, C.; Mirkin, C. A. Sub-100 nm, centimeter-scale, parallel dip-pen nanolithography. Small 2005, 1, 940-945.
[154]
Bergman, A. A.; Buijs, J.; Herbig, J.; Mathes, D. T.; Demarest, J. J.; Wilson, C. D.; Reimann, C. T.; Baragiola, R. A.; Hu, R.; Oscarsson, S. O. Nanometer-scale arrangement of human serum albumin by adsorption on defect arrays created with a finely focused ion beam. Langmuir 1998, 14, 6785-6788.
[155]
Liu, G. Y.; Xu, S.; Qian, Y. L. Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc. Chem. Res .2000, 33, 457-466.
[156]
Kolodziej, C. M.; Maynard, H. D. Electron-beam lithography for patterning biomolecules at the micron and nanometer scale. Chem. Mater .2012, 24, 774-780.
[157]
Zhang, G. J.; Tanii, T.; Zako, T.; Hosaka, T.; Miyake, T.; Kanari, Y.; Funatsu, T.; Ohdomari, I. Nanoscale patterning of protein using electron beam lithography of organosilane self-assembled monolayers. Small 2005, 1, 833-837.
[158]
Bat, E.; Lee, J.; Lau, U. Y.; Maynard, H. D. Trehalose glycopolymer resists allow direct writing of protein patterns by electron-beam lithography. Nat. Commun .2015, 6, 6654.
[159]
Phu, D.; Wray, L. S.; Warren, R. V.; Haskell, R. C.; Orwin, E. J. Effect of substrate composition and alignment on corneal cell phenotype. Tissue Eng. Part A 2011, 17, 799-807.
[160]
Dong, B.; Arnoult, O.; Smith, M. E.; Wnek, G. E. Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol. Rapid Commun .2009, 30, 539-542.
[161]
Girton, T. S.; Dubey, N.; Tranquillo, R. T. Magnetic-induced alignment of collagen fibrils in tissue equivalents. In Tissue Engineering Methods and Protocols; Morgan, J. R.; Yarmush, M. L., Eds.; Humana Press: Totowa, NJ, USA, 1999; pp 67-73.
[162]
Torbet, J.; Malbouyres, M.; Builles, N.; Justin, V.; Roulet, M.; Damour, O.; Oldberg, Å.; Ruggiero, F.; Hulmes, D. J. S. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials 2007, 28, 4268-4276.
[163]
Cheng, X. G.; Gurkan, U. A.; Dehen, C. J.; Tate, M. P.; Hillhouse, H. W.; Simpson, G. J.; Akkus, O. An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials 2008, 29, 3278-3288.
[164]
Vader, D.; Kabla, A.; Weitz, D.; Mahadevan, L. Strain-induced alignment in collagen gels. PLoS ONE 2009, 4, e5902.
[165]
Shen, L.; Garland, A.; Wang, Y.; Li, Z. C.; Bielawski, C. W.; Guo, A.; Zhu, X. Y. Two dimensional nanoarrays of individual protein molecules. Small 2012, 8, 3169-3174.
[166]
Samaddar, P.; Deep, A.; Kim, K. H. An engineering insight into block copolymer self-assembly: Contemporary application from biomedical research to nanotechnology. Chem. Eng. J .2018, 342, 71-89.
[167]
Hrubý, M.; Filippov, S. K.; Štěpánek, P. Biomedical application of block copolymers. In Macromolecular Self-Assembly; Billon, L.; Borisov, O., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp 231-250.
[168]
Ducheyne, P.; Healy, K.; Hutmacher, D. W.; Grainger, D. W.; Kirkpatrick, C. J. Comprehensive Biomaterials; Elsevier: Waltham, MA, USA, 2011.
[169]
Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 2004, 5, 383-388.
[170]
Guo, T.; Gao, J. F.; Qin, X.; Zhang, X.; Xue, H. G. A novel glucose biosensor based on hierarchically porous block copolymer film. Polymers 2018, 10, 723.
[171]
Li, Q.; Lau, K. H. A.; Sinner, E. K.; Kim, D. H.; Knoll, W. The effect of fluid flow on selective protein adsorption on polystyrene-block-poly(methyl methacrylate) copolymers. Langmuir 2009, 25, 12144-12150.
[172]
Rakhmatullina, E.; Meier, W. Solid-supported block copolymer membranes through interfacial adsorption of charged block copolymer vesicles. Langmuir 2008, 24, 6254-6261.
[173]
Chen, X. C.; Oh, H. J.; Yu, J. F.; Yang, J. K.; Petzetakis, N.; Patel, A. S.; Hetts, S. W.; Balsara, N. P. Block copolymer membranes for efficient capture of a chemotherapy drug. ACS Macro Lett .2016, 5, 936-941.
[174]
Okano, T.; Nishiyama, S.; Shinohara, I.; Akaike, T.; Sakurai, Y.; Kataoka, K.; Tsuruta, T. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. J. Biomed. Mater. Res .1981, 15, 393-402.
[175]
Lee, S.; Saito, K.; Lee, H. R.; Lee, M. J.; Shibasaki, Y.; Oishi, Y.; Kim, B. S. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery. Biomacromolecules 2012, 13, 1190-1196.
[176]
Surnar, B.; Jayakannan, M. Structural engineering of biodegradable PCL block copolymer nanoassemblies for enzyme-controlled drug delivery in cancer cells. ACS Biomater. Sci. Eng .2016, 2, 1926-1941.
[177]
Witt, C.; Mäder, K.; Kissel, T. The degradation, swelling and erosion properties of biodegradable implants prepared by extrusion or compression moulding of poly(lactide-co-glycolide) and ABA triblock copolymers. Biomaterials 2000, 21, 931-938.
[178]
Yoneda, M.; Terai, H.; Imai, Y.; Okada, T.; Nozaki, K.; Inoue, H.; Miyamoto, S.; Takaoka, K. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Biomaterials 2005, 26, 5145-5152.
[179]
Dos Santos, E. A.; Farina, M.; Soares, G. A.; Anselme, K. Surface energy of hydroxyapatite and β-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J. Mater. Sci.: Mater. Med .2008, 19, 2307-2316.
[180]
Shen, L.; Zhu, J. T. Heterogeneous surfaces to repel proteins. Adv. Colloid Interface Sci .2016, 228, 40-54.
[181]
Huang, Y. W.; Gupta, V. K. A SPR and AFM study of the effect of surface heterogeneity on adsorption of proteins. J. Chem. Phys .2004, 121, 2264-2271.
[182]
Sutherland, D. S.; Broberg, M.; Nygren, H.; Kasemo, B. Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol. Biosci .2001, 1, 270-273.
[183]
Hung, A.; Mwenifumbo, S.; Mager, M.; Kuna, J. J.; Stellacci, F.; Yarovsky, I.; Stevens, M. M. Ordering surfaces on the nanoscale: Implications for protein adsorption. J. Am. Chem. Soc .2011, 133, 1438-1450.
[184]
Penna, M.; Ley, K.; Maclaughlin, S.; Yarovsky, I. Surface heterogeneity: A friend or foe of protein adsorption-insights from theoretical simulations. Faraday Discuss .2016, 191, 435-464.
[185]
Nath, N.; Hyun, J.; Ma, H. W.; Chilkoti, A. Surface engineering strategies for control of protein and cell interactions. Surf. Sci .2004, 570, 98-110.
[186]
Katz, B. Z.; Zamir, E.; Bershadsky, A.; Kam, Z.; Yamada, K. M.; Geiger, B. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol. Biol. Cell 2000, 11, 1047-1060.
[187]
Underwood, P. A.; Steele, J. G. Practical limitations of estimation of protein adsorption to polymer surfaces. J. Immunol. Methods 1991, 142, 83-94.
[188]
Chen, L.; Yan, C.; Zheng, Z. J. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018, 21, 38-59.
[189]
Sottile, J.; Hocking, D. C.; Langenbach, K. J. Fibronectin polymerization stimulates cell growth by RGD-dependent and -independent mechanisms. J. Cell Sci .2000, 113, 4287-4299.
[190]
Diener, A.; Nebe, B.; Lüthen, F.; Becker, P.; Beck, U.; Neumann, H. G.; Rychly, J. Control of focal adhesion dynamics by material surface characteristics. Biomaterials 2005, 26, 383-392.
[191]
Dalby, M. J.; Riehle, M. O.; Sutherland, D. S.; Agheli, H.; Curtis, A. S. G. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J. Biomed. Mater. Res. A 2004, 69, 314-322.
[192]
Cavic, B. A.; Thompson, M. Adsorptions of plasma proteins and their elutabilities from a polysiloxane surface studied by an on-line acoustic wave sensor. Anal. Chem .2000, 72, 1523-1531.
[193]
Lassen, B.; Malmsten, M. Competitive protein adsorption at plasma polymer surfaces. J. Colloid Interface Sci .1997, 186, 9-16.
[194]
Lassen, B.; Malmsten, M. Competitive protein adsorption studied with TIRF and ellipsometry. J. Colloid Interface Sci .1996, 179, 470-477.
[195]
Vilaseca, P.; Dawson, K. A.; Franzese, G. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter 2013, 9, 6978-6985.
[196]
Jung, S. Y.; Lim, S. M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. D.; Holden, M. A.; Cremer, P. S. The vroman effect: A molecular level description of fibrinogen displacement. J. Am. Chem. Soc .2003, 125, 12782-12786.
[197]
Vroman, L.; Adams, A. L. Identification of rapid changes at plasma-solid interfaces. J. Biomed. Mater. Res .1969, 3, 43-67.
[198]
Hirsh, S. L.; McKenzie, D. R.; Nosworthy, N. J.; Denman, J. A.; Sezerman, O. U.; Bilek, M. M. M. The vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B: Biointerfaces 2013, 103, 395-404.
[199]
Krishnan, A.; Siedlecki, C. A.; Vogler, E. A. Mixology of protein solutions and the vroman effect. Langmuir 2004, 20, 5071-5078.
[200]
Vroman, L.; Adams, A. L. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/ solid interfaces. Surf. Sci .1969, 16, 438-446.
[201]
Norde, W.; MacRitchie, F.; Nowicka, G.; Lyklema, J. Protein adsorption at solid-liquid interfaces: Reversibility and conformation aspects. J. Colloid Interface Sci .1986, 112, 447-456.
[202]
Vroman, L.; Adams, A. L.; Klings, M.; Fischer, G. Fibrinogen, globulins, albumin and plasma at interfaces. In Applied Chemistry at Protein Interfaces; ACS: Washington, DC, USA, 1975; pp 255-289.
[203]
Andrade, J. D.; Hlady, V. Plasma protein adsorption: The big twelve. Ann. N. Y. Acad. Sci .1987, 516, 158-172.
[204]
Horbett, T. A.; Brash, J. L. Proteins at Interfaces II: Fundamentals and Applications; ACS: Washington, DC, USA, 1995.
[205]
Xie, T.; Chattoraj, J.; Mulcahey, P. J.; Kelleher, N. P.; Del Gado, E.; Hahm, J. I. Revealing the principal attributes of protein adsorption on block copolymer surfaces with direct experimental evidence at the single protein level. Nanoscale 2018, 10, 9063-9076.
[206]
Song, S.; Xie, T.; Ravensbergen, K.; Hahm, J. I. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level. Nanoscale 2016, 8, 3496-3509.
[207]
Cha, T. W.; Guo, A.; Zhu, X. Y. Enzymatic activity on a chip: The critical role of protein orientation. Proteomics 2005, 5, 416-419.
[208]
Wan, J. D.; Thomas, M. S.; Guthrie, S.; Vullev, V. I. Surface-bound proteins with preserved functionality. Anal. Biomed. Eng .2009, 37, 1190-1205.
[209]
Vroman, L. Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 1962, 196, 476-477.
[210]
Makarucha, A. J.; Todorova, N.; Yarovsky, I. Nanomaterials in biological environment: A review of computer modelling studies. Eur. Biophys. J .2011, 40, 103-115.
Nano Research
Pages 1295-1317
Cite this article:
Cho DH, Xie T, Truong J, et al. Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations. Nano Research, 2020, 13(5): 1295-1317. https://doi.org/10.1007/s12274-020-2735-7
Topics:

886

Views

13

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 18 October 2019
Revised: 07 February 2020
Accepted: 11 February 2020
Published: 28 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return