AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy

Bo Yang1Shan Zhou1Jie Zeng1Liping Zhang1Runhao Zhang1Kang Liang2Lei Xie1Bing Shao3Shaoli Song4Gang Huang5,6Dongyuan Zhao1Pu Chen7Biao Kong1( )
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200032, China
School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, NSW 2052, Australia
Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Show Author Information

Graphical Abstract

Abstract

Multimodal combinatorial therapy merges different modes of therapies in one platform, which can overcome several clinical challenges such as premature drug loss during blood circulation and significantly improve treatment efficiency. Here we report a combinatorial therapy nanoplatform that enables dual photothermal therapy and pH-stimulus-responsive chemotherapy. By super-assembly of mesoporous silica nanoparticles (MSN) with metal-phenolic networks (MPN), anti-cancer drugs can be loaded in the MSN matrix, while the outer MPN coating allows dual photothermal and pH-responsive properties. Upon near-infrared light irradiation, the MSN@MPN nanoplatform exhibits excellent photothermal effect, and demonstrates outstanding pH-triggered drug release property. In vitro cell experiments suggest the MSN@MPN system exhibits superior biocompatibility and can effectively kill tumor cells after loading anti-cancer drugs. Consequently, the MSN@MPN system shows promising prospects in clinical application for tumor therapy.

Electronic Supplementary Material

Download File(s)
12274_2020_2736_MOESM1_ESM.pdf (2 MB)

References

[1]
Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353-1359.
[2]
Fan, J. X.; Zheng, D. W.; Mei, W. W.; Chen, S.; Chen, S. Y.; Cheng, S. X.; Zhang, X. Z. A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments. Small 2017, 13, 1702714.
[3]
Jiang, Y. J.; Liu, S. J.; Zhang, Y.; Li, H. C.; He, H.; Dai, J. T.; Jiang, T.; Ji, W. H.; Geng, D. Y.; Elzatahry, A. A. et al. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials 2017, 115, 9-18.
[4]
Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030-3037.
[5]
Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[6]
Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719-1730.
[7]
Chen, G. J.; Jaskula-Sztul, R.; Esquibel, C. R.; Lou, I.; Zheng, Q. F.; Dammalapati, A.; Harrison, A.; Eliceiri, K. W.; Tang, W. P.; Chen, H. et al. Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous NIR-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging. Adv. Funct. Mater. 2017, 27, 1604671.
[8]
Lin, L. S.; Song, J. B.; Yang, H. H.; Chen, X. Y. Yolk-shell nanostructures: Design, synthesis, and biomedical applications. Adv. Mater. 2018, 30, 1704639.
[9]
Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/ chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.
[10]
Poulose, A. C.; Veeranarayanan, S.; Mohamed, M. S.; Nagaoka, Y.; Aburto, R. R.; Mitcham, T.; Ajayan, P. M.; Bouchard, R. R.; Sakamoto, Y.; Yoshida, Y. et al. Multi-stimuli responsive Cu2S nanocrystals as trimodal imaging and synergistic chemo-photothermal therapy agents. Nanoscale 2015, 7, 8378-8388.
[11]
Fang, S.; Lin, J.; Li, C. X.; Huang, P.; Hou, W. X.; Zhang, C. L.; Liu, J. J.; Huang, S. S.; Luo, Y. X.; Fan, W. P. et al. Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy. Small 2017, 13, 1602580.
[12]
Gulzar, A.; Xu, J. T.; Xu, L. G.; Yang, P. P.; He, F.; Yang, D.; An, G. H.; Ansari, M. B. Redox-responsive UCNPs-DPA conjugated NGO-PEG-BPEI-DOX for imaging-guided PTT and chemotherapy for cancer treatment. Dalton Trans. 2018, 47, 3921-3930.
[13]
Ping, Y.; Guo, J. L.; Ejima, H.; Chen, X.; Richardson, J. J.; Sun, H. L.; Caruso, F. pH-responsive capsules engineered from metal-phenolic networks for anticancer drug delivery. Small 2015, 11, 2032-2036.
[14]
Hu, C. L.; Huang, P.; Zheng, Z.; Yang, Z. B.; Wang, X. L. A facile strategy to prepare an enzyme-responsive mussel mimetic coating for drug delivery based on mesoporous silica nanoparticles. Langmuir 2017, 33, 5511-5518.
[15]
Zhu, X. L.; Huang, H. Q.; Zhang, Y. J.; Zhang, H. J.; Hou, L.; Zhang, Z. Z. Cit/CuS@Fe3O4-based and enzyme-responsive magnetic nanoparticles for tumor chemotherapy, photothermal, and photodynamic therapy. J. Biomater. Appl. 2017, 31, 1010-1025.
[16]
Su, Y.; Ojo, O. F.; Tsengam, I. K. M.; He, J. B.; McPherson, G. L.; John, V. T.; Valla, J. A. Thermoresponsive coatings on hollow particles with mesoporous shells serve as stimuli-responsive gates to species encapsulation and release. Langmuir 2018, 34, 14608-14616.
[17]
Bathfield, M.; Reboul, J.; Cacciaguerra, T.; Lacroix-Desmazes, P.; Gérardin, C. Thermosensitive and drug-loaded ordered mesoporous silica: A direct and effective synthesis using PEO-b-PNIPAM block copolymers. Chem. Mater. 2016, 28, 3374-3384.
[18]
Park, K.; Park, S. S.; Yun, Y. H.; Ha, C. S. Mesoporous silica nanoparticles functionalized with a redox-responsive biopolymer. J. Porous Mater. 2017, 24, 1215-1225.
[19]
Li, C. X.; Zhang, Y. F.; Li, Z. M.; Mei, E. C.; Lin, J.; Li, F.; Chen, C. G.; Qing, X. L.; Hou, L. Y.; Xiong, L. L. et al. Light-responsive biodegradable nanorattles for cancer theranostics. Adv. Mater. 2018, 30, 1706150.
[20]
Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem., Int. Ed. 2005, 44, 5038-5044.
[21]
Li, S.; Wu, W.; Xiu, K. M.; Xu, F. J.; Li, Z. M.; Li, J. S. Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy. J. Biomed. Nanotechnol. 2014, 10, 1480-1489.
[22]
Chen, T. C.; Wu, W.; Xiao, H.; Chen, Y. X.; Chen, M.; Li, J. S. Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett. 2016, 5, 55-58.
[23]
Wang, Z. T.; Huang, P.; Jacobson, O.; Wang, Z.; Liu, Y. J.; Lin, L. S.; Lin, J.; Lu, N.; Zhang, H. M.; Tian, R. et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano 2016, 10, 3453-3460.
[24]
Lin, J.; Wang, M.; Hu, H.; Yang, X. Y.; Wen, B.; Wang, Z. T.; Jacobson, O.; Song, J. B.; Zhang, G. F.; Niu, G. et al. Multimodal-imaging-guided cancer phototherapy by versatile biomimetic theranostics with UV and γ-irradiation protection. Adv. Mater. 2016, 28, 3273-3279.
[25]
Wang, D. D.; Dong, H. F.; Li, M.; Cao, Y.; Yang, F.; Zhang, K.; Dai, W. H.; Wang, C. T.; Zhang, X. J. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 2018, 12, 5241-5252.
[26]
Liu, Y.; Zhen, W. Y.; Jin, L. H.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886-4893.
[27]
Meng, Z. Q.; Chao, Y.; Zhou, X. F.; Liang, C.; Liu, J. J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. F. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 2018, 12, 9412-9422.
[28]
Shi, D. L.; Cho, H. S.; Chen, Y.; Xu, H.; Gu, H. C.; Lian, J.; Wang, W.; Liu, G. K.; Huth, C.; Wang, L. M. et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv. Mater. 2009, 21, 2170-2173.
[29]
Yoo, D.; Jeong, H.; Noh, S. H.; Lee, J. H.; Cheon, J. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem., Int. Ed. 2013, 52, 13047-13051.
[30]
Ding, Q.; Liu, D. F.; Guo, D. W.; Yang, F.; Pang, X. Y.; Che, R C.; Zhou, N. Z.; Xie, J.; Sun, J. F.; Huang, Z. H. et al. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Biomaterials 2017, 124, 35-46.
[31]
Wang, C.; Sun, W. J.; Wright, G.; Wang, A. Z.; Gu, Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv. Mater. 2016, 28, 8912-8920.
[32]
Oberli, M. A.; Reichmuth, A. M.; Dorkin, J. R.; Mitchell, M. J.; Fenton, O. S.; Jaklenec, A.; Anderson, D. G.; Langer, R.; Blankschtein, D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017, 17, 1326-1335.
[33]
Yu, G. T.; Rao, L.; Wu, H.; Yang, L. L.; Bu, L. L.; Deng, W. W.; Wu, L.; Nan, X. L.; Zhang, W. F.; Zhao, X. Z. et al. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by inducing macrophage polarization and synergizing immunogenic cell death. Adv. Funct. Mater. 2018, 28, 1801389.
[34]
Phuengkham, H.; Song, C.; Um, S. H.; Lim, Y. T. Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: Postoperative immunotherapy. Adv. Mater. 2018, 30, 1706719.
[35]
Dong, Q.; Wang, X. W.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.; Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z. et al. Simultaneous application of photothermal therapy and an anti-inflammatory prodrug using pyrene-aspirin-loaded gold nanorod graphitic nanocapsules. Angew. Chem., Int. Ed. 2018, 57, 177-181.
[36]
Chen, S.; Lei, Q.; Qiu, W. X.; Liu, L. H.; Zheng, D. W.; Fan, J. X.; Rong, L.; Sun, Y. X.; Zhang, X. Z. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 2017, 117, 92-104.
[37]
Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.
[38]
Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.
[39]
Luo, Z.; Hu, Y.; Cai, K. Y.; Ding, X. W.; Zhang, Q.; Li, M. H.; Ma, X.; Zhang, B. L.; Zeng, Y. F.; Li, P. Z. et al Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 2014, 35, 7951-7962.
[40]
Schrand, A. M.; Schlager, J. J.; Dai, L. M.; Hussain, S. M. Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat. Protoc. 2010, 5, 744-757.
[41]
Rahim, M. A.; Ejima, H.; Cho, K. L.; Kempe, K.; Müllner, M.; Best, J. P.; Caruso, F. Coordination-driven multistep assembly of metal- polyphenol films and capsules. Chem. Mater. 2014, 26, 1645-1653.
[42]
Ozawa, H.; Haga, M. A. Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions. Phys. Chem. Chem. Phys. 2015, 17, 8609-8613.
[43]
Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One-step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154-157.
[44]
Guo, J. L.; Ping, Y.; Ejima, H.; Alt, K.; Meissner, M.; Richardson, J. J.; Yan, Y.; Peter, K.; von Elverfeldt, D.; Hagemeyer, C. E. et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew. Chem., Int. Ed. 2014, 53, 5546-5551.
[45]
Chen, W.; Zhong, P.; Meng, F. H.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Y. Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. J. Control. Release 2013, 169, 171-179.
[46]
Gerweck, L. E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res. 1996, 56, 1194-1198.
[47]
Fan, J. X.; Zheng, D. W.; Rong, L.; Zhu, J. Y.; Hong, S.; Li, C.; Xu, Z. S.; Cheng, S. X.; Zhang, X. Z. Targeting epithelial-mesenchymal transition: Metal organic network nano-complexes for preventing tumor metastasis. Biomaterials 2017, 139, 116-126.
[48]
Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Chem. Phys. C 2007, 111, 3636-3641.
[49]
Li, B.; Wang, Q.; Zou, R. J.; Liu, X. J.; Xu, K. B.; Li, W. Y.; Hu, J. Q. Cu7.2S4 nanocrystals: A novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 2014, 6, 3274-3282.
Nano Research
Pages 1013-1019
Cite this article:
Yang B, Zhou S, Zeng J, et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Research, 2020, 13(4): 1013-1019. https://doi.org/10.1007/s12274-020-2736-6
Topics:

906

Views

78

Crossref

N/A

Web of Science

78

Scopus

10

CSCD

Altmetrics

Received: 10 November 2019
Revised: 23 February 2020
Accepted: 25 February 2020
Published: 11 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return