AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity

Marianna Barbalinardo1,§Andrea Antosova2,§Marta Gambucci3,§Zuzana Bednarikova2Cristiano Albonetti1Francesco Valle1,4Paola Sassi3Loredana Latterini3( )Zuzana Gazova2,5Eva Bystrenova1( )
C.N.R. - I.S.M.N, via Gobetti, 101, Bologna 40129, Italy
Institute of Experimental Physics, Department of Biophysics, Slovak Academy of Science, Watsonova 47 04001, Kosice, Slovakia
Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), ISMN-CNR, Bologna 40129, Italy
Department of Medical and Clinical Biochemistry, Faculty of Medicine, Safarik University, Kosice 04001, Slovakia

§ Marianna Barbalinardo, Andrea Antosova, and Marta Gambucci contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The modification of amyloid fibrils cytotoxicity through exogenous nanomaterials is crucial to understand the processes controlling the role of protein aggregation in the related diseases. The influence of nanoparticles on amyloid stability yields great interest due to the small size and high surface area-to-volume ratio of nanoparticles. Various physico-chemical parameters play a role in the interaction of proteins and nanoparticles in solution, thus influencing the disaggregation of preformed fibrils. We have examined the influence of two kinds of metallic nanoparticles on lysozyme amyloid fibrils using a multi-technique approach and focalized their impact on cytotoxicity on human neuroblastoma cells (SH-SY5Y). In particular, fluorescence, infrared and circular dichroism spectroscopies, optical and atomic force microscopy experiments have been carried out; the results are analyzed to rationalize the effects of these complexes on neural cell viability. It is remarkable, that the fibrils in the presence of AuNPs, unlike fibrils alone or with AgNPs, do not generate a significant cytotoxic effect even at high concentration and an amyloid degradation effect is visible.

Electronic Supplementary Material

Download File(s)
12274_2020_2748_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Ali, M. R. K.; Wu, Y.; El-Sayed, M. A. Gold-nanoparticle-assisted plasmonicphotothermal therapy advances toward clinical application. J. Phys. Chem. C 2019, 123, 15375-15393.
[2]
Latterini, L.; Tarpani, L. Hierarchical assembly of nanostructures to decouple fluorescence and photothermal effect. J. Phys. Chem. C 2011, 115, 21098-21104.
[3]
Lynch, I.; Dawson, K. A. Protein-nanoparticle interaction. Nano today 2008, 3, 40-47.
[4]
Alkilany, A. M.; Murphy, C. J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res. 2010, 12, 2313-2333.
[5]
Bertoli, F.; Garry, D.; Monopoli, M. P.; Salvati, A.; Dawson, K. A. The intracellular destiny of the protein corona: A study on its cellular internalization and evolution. ACS Nano 2016, 10, 10471-10479.
[6]
Barbalinardo, M.; Caicci, F.; Cavallini, M.; Gentili, D. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small 2018, 14, 1801219.
[7]
Satzer, P.; Svec, F.; Sekot, G.; Jungbauer, A. Protein adsorption onto nanoparticles induces conformational changes: Particle size dependency, kinetics, and mechanisms. Eng. Life Sci. 2016, 16, 238-246.
[8]
Gambucci, Tarpani, L.; Zampini, G.; Massaro, G.; Nocchetti, M.; Sassi, P.; Latterini, L. Fluorimetric studies of a transmembrane protein and its interactions with differently functionalized silver nanoparticles. J. Phys. Chem. B 2018, 122, 6872-6879.
[9]
Tarpani, L.; Bellezza, F.; Sassi, P.; Gambucci, M.; Cipiciani, A.; Latterini, L. New insights into the effects of surface functionalization on the peroxidase activity of cytochrome c adsorbed on silica nanoparticles. J. Phys. Chem. B 2019, 123, 2567-2575.
[10]
Gambucci, M.; Gentili, P. L.; Sassi, P.; Latterini, L. A multi-spectroscopic approach to investigate the interactions between Gramicidin A and silver nanoparticles. Soft Matter 2019, 15, 6571-6580.
[11]
Ban, D. K.; Paul, S. Functionalized gold and silver nanoparticles modulate amyloid fibrillation, defibrillation and cytotoxicity of lysozyme via altering protein surface character. Appl. Surf. Sci. 2019, 473, 373-385.
[12]
Arbor, S. C.; LaFontaine, M.; Cumbay, M. Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores. Yale J. Biol. Med. 2016, 89, 5-21.
[13]
Dobson, C. M. Protein folding and misfolding. Nature 2003, 426, 884-890.
[14]
Kruis, F. E.; Fissan, H.; Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review. J. Aerosol Sci. 1998, 29, 511-535.
[15]
Bogart, L. K.; Pourroy, G.; Murphy, C. J.;Puntes, V.; Pellegrino, T.; Rosenblum, D.; Peer, D.; Lévy, R. Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 2014, 8, 3107-3122.
[16]
Mossuto, M. F.; Dhulesia, A.; Devlin, G.; Frare, E.; Kumita, J. R.; de Laureto, P. P.; Dumoulin, M.; Fontana, A.; Dobson, C. M.; Salvatella, X. The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J. Mol. Biol. 2010, 402, 783-796.
[17]
Zaman, M.; Ahmad, E.; Qadeer, A.; Rabbani, G.; Khan, R. H. Nanoparticles in relation to peptide and protein aggregation. Int. J. Nanomedicine 2014, 9, 899-912.
[18]
Kayed, R.; Head, E.; Thompson, J. L.; McIntire, T. M.; Milton, S. C.; Cotman, C. W.; Glabe, C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300, 486-489.
[19]
Dobson, C. M.; Evans, P. A.; Radford, S. E. Understanding how proteins fold: The lysozyme story so far. Trends Biochem. Sci. 1994, 19, 31-37.
[20]
Gillmore, J. D.; Booth, D. R.; Madhoo, S.; Pepys, M. B.; Hawkins, P. N. Hereditary renal amyloidosis associated with variant lysozyme in a large English family. Nephrol. Dial. Transplant. 1999, 14, 2639-2644.
[21]
Tarpani, L.;Latterini, L. Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO2 nanoparticles. J. Luminesc. 2017, 185, 192-199.
[22]
McAllister, C.; Karymov, M. A.; Kawano, Y.; Lushnikov, A. Y.; Mikheikin, A.; Uversky, V. N.; Lyubchenko, Y. L. Protein interactions and misfolding analyzed by AFM force spectroscopy. J. Mol. Biol. 2005, 354, 1028-1042.
[23]
Novo, M.; Freire, S.; Al-Soufi, W. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci. Rep. 2018, 8, 1783.
[24]
Zhao, R.; So, M.; Maat, H.; Ray, N. J.; Arisaka, F.; Goto, Y.; Carver, J. A.; Hall, D. Measurement of amyloid formation by turbidity assay-seeing through the cloud. Biophys. Rev. 2016, 8, 445-471.
[25]
Adamcik, J.; Mezzenga, R. Study of amyloid fibrils via atomic force microscopy. Curr. Opin. Colloid Interface Sci. 2012, 17, 369-376.
[26]
Boutet, S.; Lomb, L.; Williams, G. J.; Barends, T. R. M.; Aquila, A.; Doak, R. B.; Weierstall, U.; DePonte, D. P.; Steinbrener, J.; Shoeman, R. L. et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362-364.
[27]
Giugliarelli, A.; Tarpani, L.; Latterini, L.; Morresi, A.; Paolantoni, M.; Sassi, P. Spectroscopic and microscopic studies of aggregation and fibrillation of lysozyme in water/ethanol solutions. J. Phys. Chem. B 2015, 119, 13009-13017.
[28]
Antosova, A.; Bednarikova, Z.; Koneracka, M.; Antal, I.; Marek, J.; Kubovcikova, M.; Zavisova, V.; Jurikova, A.; Gazova, Z. Aminoacid functionalized superparamagnetic nanoparticles inhibit lysozyme amyloid fibrillization. Chem. —Eur. J. 2019, 25, 7501-7514.
[29]
Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876-2890.
[30]
Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y. H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095-E3103.
[31]
Brudar, S.; Hribar-Lee, B.The role of buffers inwild-type HEWLamyloid fibril formation mechanism. Biomolecules 2019, 9, 65.
[32]
Nerelius, C.; Sandegren, A.; Sargsyan, H.; Raunak, R.; Leijonmarck, H.; Chatterjee, U.; Fisahn, A.; Imarisio, S.; Lomas, D. A.; Crowther, D. C. et al. α-helix targeting reduces amyloid-β peptide toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 9191-9196.
[33]
Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181-364.
[34]
Leeson, D. T.; Gai, F.; Rodriguez, H. M.; Gregoret, L. M.; Dyer, R. B. Protein folding and unfolding on a complex energy landscape. Proc. Natl. Acad. Sci. USA 2000, 97, 2527-2532.
[35]
Giugliarelli, A.; Sassi, P.; Paolantoni, M.; Onori, G.; Cametti, C. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements. J. Phys. Chem. B 2012, 116, 10779-10785.
[36]
Moran, S. D.; Zanni, M. T. How to get insight into amyloid structure and formation from infrared spectroscopy. J. Phys. Chem. Lett. 2014, 5, 1984-1993.
[37]
Vesaratchanon, S.; Nikolov, A.; Wasan,D. T. Sedimentation in nano-colloidal dispersions: Effects of collective interactions and particle charge. Adv. Colloid Interface Sci. 2007, 134-135, 268-278.
[38]
Bystrenova, E.; Bednarikova, Z.; Barbalinardo, M.; Albonetti, C.; Valle, F.; Gazova, Z. Amyloid fragments and their toxicity on neural cells. Regen. Biomater. 2019, 6, 121-127.
[39]
Hefendehl, J. K.; Wegenast-Braun, B. M.; Liebig, C.; Eicke, D.; Milford, D.; Calhoun, M. E.; Kohsaka, S.; Eichner, M.; Jucker, M. Long-term in vivo imaging of β-amyloid plaque appearance and growth in a mouse model of cerebral β-amyloidosis. J. Neurosci. 2011, 31, 624-629.
[40]
Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181-188.
[41]
Kelly, J. G.; Hawken, M. J. Quantification of neuronal density across cortical depth using automated 3D analysis of confocal image stacks. Brain Struct. Funct. 2017, 222, 3333-3353.
[42]
Twentyman, P. R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 1987, 56, 279-285.
[43]
Barbalinardo, M.; Gentili, D.; Lazzarotto, F.; Valle, F.; Brucale, M.; Melucci, M.; Favaretto, L.; Zambianchi, M.; Borrachero-Conejo, A. I.; Saracino, E. et al. Data-matrix technology for multiparameter monitoring of cell cultures. Small Methods 2018, 2, 1700377.
[44]
Rasband,W. S. ImageJ; U.S. National Insitutes of Health:Bethesda, Maryland, USA, 1997-2016. https://imagej.nih.gov/ij/ (accessed nov 28, 2019).
[45]
Krebs, M. R. H.; Bromley, E. H. C.; Donald, A. M. The binding of thioflavin-T to amyloid fibrils: Localisationand implications. J. Struct. Biol. 2005, 149, 30-37.
[46]
Linse, S.; Cabaleiro-Lago, C.; Xue, W. F.; Lynch, I.; Lindman, S.; Thulin, E.; Radford, S. E.; Dawson, K. A. Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 8691-8696.
[47]
Lopez-Tobar, E.; Antalik, M.; Jancura, D.; Cañamares, M. V.; García-Leis, A.; Fedunova, D.; Fabriciova,G.; Sanchez-Cortes, S. Adsorption and detection of amyloid marker thioflavin t on Ag nanoparticles by surface-enhanced Raman scattering. J. Phys. Chem. C 2013, 117, 3996-4005.
[48]
Mahmoudi, M.; Quinlan-Pluck, F.; Monopoli, M. P.; Sheibani, S.; Vali, H.; Dawson, K. A.; Lynch, I. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem. Neurosci. 2013, 4, 475-485.
Nano Research
Pages 1081-1089
Cite this article:
Barbalinardo M, Antosova A, Gambucci M, et al. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Research, 2020, 13(4): 1081-1089. https://doi.org/10.1007/s12274-020-2748-2
Topics:

765

Views

35

Crossref

N/A

Web of Science

33

Scopus

3

CSCD

Altmetrics

Received: 28 November 2019
Revised: 14 February 2020
Accepted: 10 March 2020
Published: 14 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return