AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene

Bing Wang1Shipeng Zhong1Yanqi Ge1Huide Wang1Xiaoling Luo2( )Han Zhang1( )
College of Physics and Optoelectronic Engineering, College of Electronic and Information Engineering, Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
Department of Ophthalmology, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen 518020, China
Show Author Information

Graphical Abstract

Abstract

As an excellent optical device, photodetectors have many important applications, such as communication technology, display technology, scientific measurement, fire monitoring, aerospace and biomedical research, and it’s of great significance in the research of nanotechnology and optoelectronics. Graphene, as the first two-dimensional (2D) single-element nanomaterial, has the advantages of high carrier mobility, high strength, high light transmittance and excellent thermal conductivity, and it’s widely used in various nano-optical devices. The great success of graphene has led scientists to extensive research on other 2D single-element nanomaterials. Recently, a group of novel 2D single-element nanomaterials have attracted a lot of attention from scientists because of its excellent physical, chemical, electronic, mechanical and optical properties. Furthermore, it has opened a new door for the realization of new and efficient photodetectors. The group of 2D single-element nanomaterials are called 2D-Xenes and used to make high-performance photodetectors. Currently, there are few studies on photodetectors based on 2D-Xenes, but some 2D-Xenes have been applied to photodetectors and reported. Some of these have excellent photodetection performance, such as high photoresponsivity (R), broad spectral response range, fast photoresponse speed and high specific detectivity (D*). Based on the novel 2D-Xenes, this review explores the types and preparation methods of 2D-Xenes, and the working mechanisms of 2D-Xenes photodetectors. Finally, the challenges and development trends of 2D-Xenes in the future are discussed. The research of 2D-Xenes is of great significance for the development of high-performance photodetectors in the future, and is expected to be widely used in other nanoelectronics and optical devices.

References

[1]
Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691-3718.
[2]
Ankah, G. N.; Büchele, P.; Poulsen, K.; Rauch, T.; Tedde, S. F.; Gimmler, C.; Schmidt, O.; Kraus, T. PbS quantum dot based hybrid-organic photodetectors for X-ray sensing. Org. Electron. 2016, 33, 201-206.
[3]
Teng, F.; Hu, K.; Ouyang, W. X.; Fang, X. S. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, 1706262.
[4]
Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater.2019, 29, 1803807.
[5]
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat.Nanotechnol. 2014, 9, 780-793.
[6]
Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.
[7]
Wang, B.; Zhong, S. P.; Zhang, Z. B.; Zheng, Z. Q.; Zhang, Y. P.; Zhang, H. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Appl. Mater. Today 2019, 15, 115-138.
[8]
Chen, H. Y.; Liu, H.; Zhang, Z. M.; Hu, K.; Fang, X. S. Nanostructured photodetectors: From ultraviolet to terahertz. Adv. Mater. 2016, 28, 403-433.
[9]
Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.
[10]
Su, L. X.; Yang, W.; Cai, J.; Chen, H. Y.; Fang, X. S. Self-powered ultraviolet photodetectors driven by built-in electric field. Small 2017, 13, 1701687.
[11]
Wang, G. Y.; Zhang, Y. Z.; You, C. Y.; Liu, B. Y.; Yang, Y. H.; Li, H. J. W.; Cui, A. J.; Liu, D. M.; Yan, H. Two dimensional materials based photodetectors. Infrared Phys. Technol. 2018, 88, 149-173.
[12]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[13]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[14]
Zhou, Y. H.; An, H. N.; Gao, C.; Zheng, Z. Q.; Wang, B. UV-Vis-NIR photodetector based on monolayer MoS2. Mater. Lett. 2019, 237, 298-302.
[15]
Zhou, Y. H.; Zhang, Z. B.; Xu, P.; Zhang, H.; Wang, B. UV-Visible photodetector based on i-type heterostructure of ZnO-QDs/monolayer MoS2. Nanoscale Res. Lett. 2019, 14, 364.
[16]
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology. Nanotechnology 2017, 28, 415501.
[17]
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, Y. B.; Yang, G. W.; Li, J. B. Self-assembly high-performance UV-Vis-NIR broadband β-In2Se3/ si photodetector array for weak signal detection. ACS Appl. Mater. Interfaces 2017, 9, 43830-43837.
[18]
Wang, B.; Jin, H. T.; Zheng, Z. Q.; Zhou, Y. H.; Gao, C. Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuators B Chem. 2017, 244, 344-356.
[19]
Zheng, Z. Q.; Jin, H. T.; Ouyang, G.; Wang, B. Field emission and growth mechanism of ZnO microrods array with nanospikes fabricated by thermal evaporation. Mater. Lett. 2016, 170, 210-212.
[20]
Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070.
[21]
Zheng, Z. Q.; Wang, B.; Yao, J. D.; Yang, G. W. Light-controlled C2H2 gas sensing based on Au-ZnO nanowires with plasmon-enhanced sensitivity at room temperature. J. Mater. Chem. C 2015, 3, 7067-7074.
[22]
Zheng, Z. Q.; Zhu, L. F.; Wang, B. In2O3 nanotower hydrogen gas sensors based on both schottky junction and thermoelectronic emission. Nanoscale Res. Lett. 2015, 10, 293.
[23]
Wang, B.; Jin, X.; Wu, H. Y.; Zheng, Z. Q.; Ouyang, Z. B. 3D resonator based on luminescence enhanced by both polarized, size-dependent whispering gallery modes and Fabry-Pérot waveguide modes in individual ZnO micro-and nanonails. Nanoscale 2014, 6, 5338-5342.
[24]
Wang, B.; Zheng, Z. Q.; Zhu, L. F.; Yang, Y. H.; Wu, H. Y. Self-assembled and Pd decorated Zn2SnO4/ZnO wire-sheet shape nano-heterostructures networks hydrogen gas sensors. Sens. Actuators B Chem. 2014, 195, 549-561.
[25]
Wang, B.; Zheng, Z. Q.; Wu, H. Y.; Zhu, L. F. Field emission properties and growth mechanism of In2O3 nanostructures. Nanoscale Res. Lett. 2014, 9, 111.
[26]
Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P. Field emission properties originated from 2D electronics gas successively tunneling for 1D heterostructures of ZnO nanobelts decorated with In2O3 nanoteeth. J. Nanopart. Res. 2012, 14, 1008.
[27]
Wang, B.; Jin, X.; Ouyang, Z. B. Synthesis, characterization and cathodoluminescence of self-assembled 1D ZnO/In2O3 nano-heterostructures. Crystengcomm 2012, 14, 6888-6903.
[28]
Wang, B.; Jin, X.; Wu, H. Y.; Zheng, Z. Q. Whispering gallery and Fabry-Pérot modes enhanced luminescence from individual ZnO micro mushroom. J. Appl. Phys. 2013, 113, 034313.
[29]
Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H. Field emission and photoluminescence of ZnO nanocombs. Appl. Phys. A 2013, 113, 549-556.
[30]
Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation. Appl. Phys. A 2012, 108, 195-200.
[31]
Wang, B.; Li, I. L.; Xu, P.; Xing, L. W. Fabrication and photoluminescence of the SnO2 plate-shape nanostructures and chrysanthemum-shape nanostructures. Rev. Adv. Mater. Sci. 2013, 33, 164-170.
[32]
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[33]
Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261-7284.
[34]
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
[35]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[36]
Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077-3083.
[37]
Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411-415.
[38]
Zhang, H.; Bao, Q. L.; Tang, D. Y.; Zhao, L. M.; Loh, K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl. Phys. Lett. 2009, 95, 141103.
[39]
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt. Express 2009, 17, 17630-17635.
[40]
Zhang, H.; Tang, D. Y.; Knize, R. J.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 2010, 96, 111112.
[41]
Zhang, H.; Virally, S.; Bao, Q. L.; Ping, L. K.; Massar, S.; Godbout, N.; Kockaert, P. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 2012, 37, 1856-1858.
[42]
Bao, Q. L.; Zhang, H.; Yang, J. X.; Wang, S.; Tang, D. Y.; Jose, R.; Ramakrishna, S.; Lim, C. T.; Loh, K. P. Graphene-polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 2010, 20, 782-791.
[43]
Bao, Q. L.; Zhang, H.; Ni, Z. H.; Wang, Y.; Polavarapu, L.; Shen, Z. X.; Xu, Q. H.; Tang, D. Y.; Loh, K. P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2011, 4, 297-307.
[44]
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P.; Lin, B.; Tjin, S. C. Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: From all anomalous dispersion to all normal dispersion. Laser Phys. Lett. 2010, 7, 591-596.
[45]
Zheng, Z. W.; Zhao, C. J.; Lu, S. B.; Chen, Y.; Li, Y.; Zhang, H.; Wen, S. C. Microwave and optical saturable absorption in graphene. Opt. Express 2012, 20, 23201-23214.
[46]
Zhao, L. M.; Tang, D. Y.; Zhang, H.; Wu, X.; Bao, Q. L.; Loh, K. P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622-3624.
[47]
Ponraj, J. S.; Xu, Z. Q.; Dhanabalan, S. C.; Mu, H. R.; Wang, Y. S.; Yuan, J.; Li, P. F.; Thakur, S.; Ashrafi, M.; Mccoubrey, K. et al. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 2016, 27, 462001.
[48]
Wang, Z. T.; Chen, Y.; Zhao, C. J.; Zhang, H.; Wen, S. C. Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber. IEEE Photonics J. 2012, 4, 869-876.
[49]
Song, Y. F.; Li, L.; Zhang, H.; Shen, D. Y.; Tang, D. Y.; Loh, K. P. Vector multi-soliton operation and interaction in a graphene mode-locked fiber laser. Opt. Express 2013, 21, 10010-10018.
[50]
Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. Vector dissipative solitons in graphene mode locked fiber lasers. Opt. Commun. 2010, 283, 3334-3338.
[51]
Li, H. J.; Wang, L. L.; Zhang, H.; Huang, Z. R.; Sun, B.; Zhai, X.; Wen, S. C. Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter. Appl. Phys. Express 2014, 7, 024301.
[52]
Song, Y. F.; Zhang, H.; Tang, D. Y.; Shen, D. Y. Polarization rotation vector solitons in a graphene mode-locked fiber laser. Opt. Express 2012, 20, 27283-27289.
[53]
Miao, L. L.; Jiang, Y. Q.; Lu, S. B.; Shi, B. X.; Zhao, C. J.; Zhang, H.; Wen, S. C. Broadband ultrafast nonlinear optical response of few-layers graphene: Toward the mid-infrared regime. Photonics Res. 2015, 3, 214-219.
[54]
Zheng, G. P.; Chen, Y.; Huang, H. H.; Zhao, C. J.; Lu, S. B.; Chen, S. Q.; Zhang, H.; Wen, S. C. Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: Applications for ultra-fast laser photonics. ACS Appl. Mater. Interfaces 2013, 5, 10288-10293.
[55]
Wang, Z. T.; Zou, Y. H.; Chen, Y.; Wu, M.; Zhao, C. J.; Zhang, H.; Wen, S. C. Graphene sheet stacks for Q-switching operation of an erbium-doped fiber laser. Laser Phys. Lett. 2013, 10, 075102.
[56]
Chen, X.; Wang, Y.; Xiang, Y. J.; Jiang, G. B.; Wang, L. L.; Bao, Q. L.; Zhang, H.; Liu, Y.; Wen, S. C.; Fan, D. Y. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightw. Technol. 2016, 34, 4948-4953.
[57]
Shivananju, B. N.; Bao, X. Z.; Yu, W. Z.; Yuan, J.; Mu, H. R.; Sun, T.; Xue, T. Y.; Zhang, Y. P.; Liang, Z. Z.; Kan, R. F.et al. Graphene heterostructure integrated optical fiber Bragg grating for light motion tracking and ultrabroadband photodetection from 400 nm to 10.768 µm. Adv. Funct. Mater. 2019, 29, 1807274.
[58]
Mu, H. R.; Wang, Z. T.; Yuan, J.; Xiao, S.; Chen, C. Y.; Chen, Y.; Chen, Y.; Song, J. C.; Wang, Y. S.; Xue, Y. Z.et al. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics 2015, 2, 832-841.
[59]
Han, M. M.; Zhang, S. M.; Li, X. L.; Zhang, H. X.; Yang, H.; Yuan, T. Polarization dynamic patterns of vector solitons in a graphene mode-locked fiber laser. Opt. Express 2015, 23, 2424-2435.
[60]
Song, Y. F.; Liang, Z. M.; Zhang, H.; Zhang, Q.; Zhao, L. M.; Shen, D. Y.; Tang, D. Y. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser. IEEE Photonics J. 2017, 9, 4502308.
[61]
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
[62]
Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338-344.
[63]
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
[64]
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
[65]
Zhang, Y. P.; Wu, Z. X.; Cao, Y. Y.; Zhang, H. Y. Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal. Opt. Commun. 2015, 338, 168-173.
[66]
Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2009, 462, 192-195.
[67]
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.
[68]
Mueller, T.; Xia, F. N.; Freitag, M.; Tsang, J.; Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 2009, 79, 245430.
[69]
Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[70]
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[71]
Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.
[72]
Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin even-layered PdSe2 ribbons. Small 2019, 15, 1902789.
[73]
Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C.et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2phototransistors. Adv. Mater. 2018, 30, 1705542.
[74]
Cao, G. Y.; Shang, A. X.; Zhang, C.; Gong, Y. P.; Li, S. J.; Bao, Q. L.; Li, X. F. Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy 2016, 30, 260-266.
[75]
Zheng, W. H.; Jiang, Y.; Hu, X. L.; Li, H. L.; Zeng, Z. X. S.; Wang, X.; Pan, A. L. Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.
[76]
Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.
[77]
Cao, G. Y.; An, Y. D.; Bao, Q. L.; Li, X. F. Physics and optoelectronic simulation of photodetectors based on 2D materials. Adv. Opt. Mater. 2019, 7, 1900410.
[78]
Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. H.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018, 11, 1787-1797.
[79]
Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C.Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.
[80]
Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2,717 nm. Adv. Mater. 2017, 29, 1605972.
[81]
Zhou, M.; Chen, X. B.; Li, M. L.; Du, A. J. Widely tunable and anisotropic charge carrier mobility in monolayer tin(II) selenide using biaxial strain: A first-principles study. J. Mater. Chem. C 2017, 5, 1247-1254.
[82]
Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916-14922.
[83]
Ji, X. Y.; Kong, N.; Wang, J. Q.; Li, W. L.; Xiao, Y. L.; Gan, S. T.; Zhang, Y.; Li, Y. J.; Song, X. R.; Xiong, Q. Q.et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.
[84]
Guzmán-Verri, G. G.; Voon, L. C. L. Y. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.
[85]
Ni, Z. Y.; Liu, Q. H.; Tang, K. C.; Zheng, J. X.; Zhou, J.; Qin, R.; Gao, Z. X.; Yu, D. P.; Lu, J. Tunable bandgap in silicene and germanene. Nano Lett. 2012, 12, 113-118.
[86]
Bianco, E.; Butler, S.; Jiang, S. S.; Restrepo, O. D.; Windl, W.; Goldberger, J. E. Stability and exfoliation of germanane: A germanium graphane analogue. ACS Nano 2013, 7, 4414-4421.
[87]
Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.
[88]
Chen, Y.; Jiang, G. B.; Chen, S. Q.; Guo, Z. N.; Yu, X. F.; Zhao, C. J.; Zhang, H.; Bao, Q. L.; Wen, S. C.; Tang, D. Y. et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express 2015, 23, 12823-12833.
[89]
Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526-11530.
[90]
Lu, S. B.; Miao, L. L.; Guo, Z. N.; Qi, X.; Zhao, C. J.; Zhang, H.; Wen, S. C.; Tang, D. Y.; Fan, D. Y. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material. Opt. Express 2015, 23, 11183-11194.
[91]
Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[92]
Luo, Z. C.; Liu, M.; Guo, Z. N.; Jiang, X. F.; Luo, A. P.; Zhao, C. J.; Yu, X. F.; Xu, W. C.; Zhang, H. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030-20039.
[93]
Qin, Z. P.; Xie, G. Q.; Zhang, H.; Zhao, C. J.; Yuan, P.; Wen, S. C.; Qian, L. J. Black phosphorus as saturable absorber for the Q-switched Er: ZBLAN fiber laser at 2.8 μm. Opt. Express 2015, 23, 24713-24718.
[94]
Mu, H. R.; Lin, S. H.; Wang, Z. C.; Xiao, S.; Li, P. F.; Chen, Y.; Zhang, H.; Bao, H. F.; Lau, S. P.; Pan, C. X.et al. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 2015, 3, 1447-1453.
[95]
Ma, J.; Lu, S. B.; Guo, Z. N.; Xu, X. D.; Zhang, H.; Tang, D. Y.; Fan, D. Y. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. Opt. Express 2015, 23, 22643-22648.
[96]
Qiu, M.; Wang, D.; Liang, W. Y.; Liu, L. P.; Zhang, Y.; Chen, X.; Sang, D. K.; Xing, C. Y.; Li, Z. J.; Dong, B. Q. et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501-506.
[97]
Xu, Y. H.; Wang, Z. T.; Guo, Z. N.; Huang, H.; Xiao, Q. L.; Zhang, H.; Yu, X. F. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 2016, 4, 1223-1229.
[98]
Jiang, Q. Q.; Xu, L.; Chen, N.; Zhang, H.; Dai, L. M.; Wang, S. Y. Facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angew. Chem., Int. Ed. 2016, 55, 13849-13853.
[99]
Dhanabalan, S. C.; Ponraj, J. S.; Guo, Z. N.; Li, S. J.; Bao, Q. L.; Zhang, H. Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305.
[100]
Ren, X. H.; Zhou, J.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Li, Z. J.; Ge, Y. Q.; Dhanabalan, S. C.; Ponraj, J. S.; Wang, S. Y. et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.
[101]
Xing, C. Y.; Jing, G. H.; Liang, X.; Qiu, M.; Li, Z. J.; Cao, R.; Li, X. J.; Fan, D. Y.; Zhang, H. Graphene oxide/black phosphorus nanoflake aerogels with robust thermo-stability and significantly enhanced photothermal properties in air. Nanoscale 2017, 9, 8096-8101.
[102]
Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997-1019.
[103]
Du, J.; Zhang, M.; Guo, Z.; Chen, J.; Zhu, X.; Hu, G.; Peng, P.; Zheng, Z.; Zhang, H. Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017, 7, 42357.
[104]
Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588-5601.
[105]
Zheng, J. L.; Yang, Z. H.; Si, C.; Liang, Z. M.; Chen, X.; Cao, R.; Guo, Z. N.; Wang, K.; Zhang, Y.; Ji, J. H. et al. Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics 2017, 4, 1466-1476.
[106]
Song, Y. F.; Chen, S.; Zhang, Q.; Li, L.; Zhao, L. M.; Zhang, H.; Tang, D. Y. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Opt. Express 2016, 24, 25933-25942.
[107]
Tang, X.; Liang, W. Y.; Zhao, J. L.; Li, Z. J.; Qiu, M.; Fan, T. J.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. N. et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.
[108]
Chen, X. H.; Xu, G. H.; Ren, X. H.; Li, Z. J.; Qi, X.; Huang, K.; Zhang, H.; Huang, Z. Y.; Zhong, J. X. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors.J. Mater. Chem. A 2017, 5, 6581-6588.
[109]
Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. G.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694-12705.
[110]
Qiu, M.; Sun, Z. T.; Sang, D. K.; Han, X. G.; Zhang, H.; Niu, C. M. Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 2017, 9, 13384-13403.
[111]
Zheng, J. L.; Tang, X.; Yang, Z. H.; Liang, Z. M.; Chen, Y. X.; Wang, K.; Song, Y. F.; Zhang, Y.; Ji, J. H.; Liu, Y. et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 2017, 5, 1700026.
[112]
Liu, Y.; Shivananju, B. N.; Wang, Y. S.; Zhang, Y. P.; Yu, W. Z.; Xiao, S.; Sun, T.; Ma, W. L.; Mu, H. R.; Lin, S. H. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 36137-36145.
[113]
Wang, Z. T.; Xu, Y. H.; Dhanabalan, S. C.; Sophia, J.; Zhao, C. J.; Xu, C. W.; Xiang, Y. J.; Li, J. Q.; Zhang, H. Black phosphorus quantum dots as an efficient saturable absorber for bound soliton operation in an erbium doped fiber laser. IEEE Photonics J. 2016, 8, 1503310.
[114]
Pawliszewska, M.; Ge, Y. Q.; Li, Z. J.; Zhang, H.; Sotor, J. Fundamental and harmonic mode-locking at 2.1 μm with black phosphorus saturable absorber. Opt. Express 2017, 25, 16916-16921.
[115]
Xu, Y. H.; Jiang, X. F.; Ge, Y. Q.; Guo, Z. N.; Zeng, Z. K.; Xu, Q. H.; Zhang, H.; Yu, X. F.; Fan, D. Y. Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C 2017, 5, 3007-3013.
[116]
Liu, J. J.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Su, L. B. Dual-wavelength Q-switched Er: SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express 2016, 24, 30289-30295.
[117]
Yin, F.; Hu, K.; Chen, S.; Wang, D. Y.; Zhang, J. N.; Xie, M. S.; Yang, D.; Qiu, M.; Zhang, H.; Li, Z. G. Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. J. Mater. Chem. B 2017, 5, 5433-5440.
[118]
Xu, Y. H.; Wang, W. X.; Ge, Y. Q.; Guo, H. Y.; Zhang, X. J.; Chen, S.; Deng, Y. H.; Lu, Z. G.; Zhang, H. Stabilization of black phosphorous quantum dots in PMMA nanofiber film and broadband nonlinear optics and ultrafast photonics application. Adv. Funct. Mater. 2017, 27, 1702437.
[119]
Luo, S. J.; Zhao, J. L.; Zou, J. F.; He, Z. L.; Xu, C. W.; Liu, F. W.; Huang, Y.; Dong, L.; Wang, L.; Zhang, H. Self-standing polypyrrole/ black phosphorus laminated film: Promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS Appl. Mater. Interfaces 2018, 10, 3538-3548.
[120]
Ge, Y. Q.; Chen, S.; Xu, Y. J.; He, Z. L.; Liang, Z. M.; Chen, Y. X.; Song, Y. F.; Fan, D. Y.; Zhang, K.; Zhang, H. Few-layer selenium-doped black phosphorus: Synthesis, nonlinear optical properties and ultrafast photonics applications. J. Mater. Chem. C 2017, 5, 6129-6135.
[121]
Tan, Y.; Guo, Z. N.; Ma, L. A.; Zhang, H.; Akhmadaliev, S.; Zhou, S. Q.; Chen, F. Q-switched waveguide laser based on two-dimensional semiconducting materials: Tungsten disulfide and black phosphorous. Opt. Express 2016, 24, 2858-2866.
[122]
Xu, Y. J.; Yuan, J.; Zhang, K.; Hou, Y.; Sun, Q.; Yao, Y. M.; Li, S. J.; Bao, Q. L.; Zhang, H.; Zhang, Y. G. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.
[123]
Wang, Y. Z.; Zhang, F.; Tang, X.; Chen, X.; Chen, Y. X.; Huang, W. C.; Liang, Z. M.; Wu, L. M.; Ge, Y. Q.; Song, Y. F. et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 2018, 12, 1800016.
[124]
Liu, S. X.; Li, Z. J.; Ge, Y. Q.; Wang, H. D.; Yue, R.; Jiang, X. T.; Li, J. Q.; Wen, Q.; Zhang, H. Graphene/phosphorene nano-heterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance. Photonics Res. 2017, 5, 662-668.
[125]
Liu, J. M.; Chen, Y.; Li, Y.; Zhang, H.; Zheng, S. Q.; Xu, S. X. Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber. Photonics Res. 2018, 6, 198-203.
[126]
Zhou, J.; Li, Z. J.; Ying, M.; Liu, M. X.; Wang, X. M.; Wang, X. Y.; Cao, L. W.; Zhang, H.; Xu, G. X. Black phosphorus nanosheets for rapid microRNA detection. Nanoscale 2018, 10, 5060-5064.
[127]
Jiang, X. F.; Zeng, Z. K.; Li, S.; Guo, Z. N.; Zhang, H.; Huang, F.; Xu, Q. H. Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials 2017, 10, 210.
[128]
Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications.Adv. Funct. Mater. 2019, 29, 1808306.
[129]
Zhang, M.; Wu, Q.; Zhang, F.; Chen, L. L.; Jin, X. X.; Hu, Y. W.; Zheng, Z.; Zhang, H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 2019, 7, 1800224.
[130]
Liang, X.; Ye, X. Y.; Wang, C.; Xing, C. Y.; Miao, Q. W.; Xie, Z. J.; Chen, X. L.; Zhang, X. D.; Zhang, H.; Mei, L. Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150-161.
[131]
Fan, T. J.; Zhou, Y. S.; Qiu, M.; Zhang, H. Black phosphorus: A novel nanoplatform with potential in the field of bio-photonic nanomedicine. J. Innov. Opt. Health Sci. 2018, 11, 1830003.
[132]
Zhang, J. N.; Chen, S.; Ma, Y.; Wang, D. Y.; Zhang, J.; Wang, Y. D.; Li, W. J.; Yu, Z. Q.; Zhang, H.; Yin, F. et al. Organosilicon modification to enhance the stability of black phosphorus nanosheets under ambient conditions. J. Mater. Chem. B 2018, 6, 4065-4070.
[133]
Tang, S. N.; He, Z. L.; Liang, G. W.; Chen, S.; Ge, Y. Q.; Sang, D. K.; Lu, J. X.; Lu, S. B.; Wen, Q.; Zhang, H. Pulse duration dependent nonlinear optical response in black phosphorus dispersions. Opt. Commun. 2018, 406, 244-248.
[134]
Huang, H.; Xiao, Q. L.; Wang, J. H.; Yu, X. F.; Wang, H. Y.; Zhang, H.; Chu, P. K. Black phosphorus: A two-dimensional reductant for in situ nanofabrication. NPJ 2D Mater. Appl. 2017, 1, 20.
[135]
Qiu, M.; Singh, A.; Wang, D.; Qu, J. L.; Swihart, M.; Zhang, H.; Prasad, P. N. Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus. NanoToday 2019, 25, 135-155.
[136]
Li, C.; Liu, J.; Guo, Z. N.; Zhang, H.; Ma, W. W.; Wang, J. Y.; Xu, X. D.; Su, L. B. Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er: CaF2 mid-infrared laser. Opt. Commun. 2018, 406, 158-162.
[137]
Sharma, A.; Wen, B.; Liu, B. Q.; Myint, Y. W.; Zhang, H.; Lu, Y. R. Defect engineering in few-layer phosphorene. Small 2018, 14, 1704556.
[138]
Li, Z. J.; Xu, H.; Shao, J. D.; Jiang, C.; Zhang, F.; Lin, J.; Zhang, H.; Li, J. Q.; Huang, P. Polydopamine-functionalized black phosphorus quantum dots for cancer theranostics. Appl. Mater. Today 2019, 15, 297-304.
[139]
Tang, X.; Chen, H.; Ponraj, J. S.; Dhanabalan, S. C.; Xiao, Q. L.; Fan, D. Y.; Zhang, H. Fluorination-enhanced ambient stability and electronic tolerance of black phosphorus quantum dots. Adv. Sci. 2018, 5, 1800420.
[140]
Sang,D. K.; Wang, H. D.; Guo, Z. N.; Xie, N.; Zhang, H. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 2019, 29, 1903419.
[141]
Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R. G.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2017, 29, 2191-2201.
[142]
Wang, Y. Y.; Ye, M.; Weng, M. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Guo, Y.; Pan, Y. Y.; Xiao, L.; Liu, J. K. et al. Electrical contacts in monolayer arsenene devices. ACS Appl. Mater. Interfaces 2017, 9, 29273-29284.
[143]
Tao, W.; Ji, X. Y.; Xu, X. D.; Islam, M. A.; Li, Z. J.; Chen, S.; Saw, P. E.; Zhang, H.; Bharwani, Z.; Guo, Z. L. et al. Antimonene quantum dots: Synthesis and application as near-infrared photothermal agents for effective cancer therapy. Angew. Chem., Int. Ed. 2017, 56, 11896-11900.
[144]
Lu, L.; Tang, X.; Cao, R.; Wu, L. M.; Li, Z. J.; Jing, G. H.; Dong, B. Q.; Lu, S. B.; Li, Y.; Xiang, Y. J. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: A promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 2017, 5,1700301.
[145]
Song, Y. F.; Liang, Z. M.; Jiang, X. T.; Chen, Y. X.; Li, Z. J.; Lu, L.; Ge, Y. Q.; Wang, K.; Zheng, J. L.; Lu, S. B. et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010.
[146]
Tao, W.; Ji, X. Y.; Zhu, X. B.; Li, L.; Wang, J. Q.; Zhang, Y.; Saw, P. E.; Li, W. L.; Kong, N.; Islam, M. A. et al. Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 2018, 30, 1802061.
[147]
Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.
[148]
Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Liang, W. Y.; Wang, K.; Liang, Z. M.; Ge, Y. Q.; Zhang, F.; Wu, L. M.; Zheng, J. L. et al. Nonlinear few-layer antimonene-based all-optical signal processing: Ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater. 2018, 6, 1701287.
[149]
Wang, Y. Z.; Huang, W. C.; Wang, C.; Guo, J.; Zhang, F.; Song, Y. F.; Ge, Y. Q.; Wu, L. M.; Liu, J.; Li, J. Q. et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 2019, 13, 1800313.
[150]
Zhang, G. J.; Tang, X.; Fu, X.; Chen, W. C.; Shabbir, B.; Zhang, H.; Liu, Q.; Gong, M. L. 2D group-VA fluorinated antimonene: Synthesis and saturable absorption. Nanoscale 2019, 11, 1762-1769.
[151]
Tang, X.; Hu, L.; Fan, T. W.; Zhang, L.; Zhu, L. P.; Li, H.; Liu, H. L.; Liang, J. Y.; Wang, K. D.; Li, Z. J. et al. Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms. Adv. Funct. Mater. 2019, 29, 1808746.
[152]
Song, Y. F.; Chen, Y. X.; Jiang, X. T.; Liang, Z. M.; Liang, W. Y.; Ge, Y. Q.; Zhang, H. Few-layer antimonene decorated microfiber as an all optical thresholder and wavelength converter for optical signal processing. In Proceedings of Asia Communications and Photonics Conference 2017. Guangzhou, China, 2017.
[153]
Zhang, F.; Jiang, X. T.; He, Z. L.; Liang, W. Y.; Xu, S. X.; Zhang, H. Third-order nonlinear optical responses and carrier dynamics in antimonene. Opt. Mater. 2019, 95, 109209.
[154]
Lu, L.; Wang, W. H.; Wu, L. M.; Jiang, X. T.; Xiang, Y. J.; Li, J. Q.; Fan, D. Y.; Zhang, H. All-optical switching of two continuous waves in few layer bismuthene based on spatial cross-phase modulation. ACS Photonics 2017, 4, 2852-2861.
[155]
Guo, B.; Wang, S. H.; Wu, Z. X.; Wang, Z. X.; Wang, D. H.; Huang, H.; Zhang, F.; Ge, Y. Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750-22760.
[156]
Chai, T.; Li, X. H.; Feng, T. C.; Guo, P. L.; Song, Y. F.; Chen, Y. X.; Zhang, H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale 2018, 10, 17617-17622.
[157]
Huang, H.; Ren, X. H.; Li, Z. J.; Wang, H. D.; Huang, Z. Y.; Qiao, H.; Tang, P. H.; Zhao, J. L.; Liang, W. Y.; Ge, Y. Q. et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology 2018, 29, 235201.
[158]
Su, X. C.; Wang, Y. R.; Zhang, B. T.; Zhang, H.; Yang, K. J.; Wang, R. H.; He, J. L. Bismuth quantum dots as an optical saturable absorber for a 1.3 μm Q-switched solid-state laser. Appl. Opt. 2019, 58, 1621-1625.
[159]
Xing, C. Y.; Huang, W. C.; Xie, Z. J.; Zhao, J. L.; Ma, D. T.; Fan, T. J.; Liang, W. Y.; Ge, Y. Q.; Dong, B. Q.; Li, J. Q. et al. Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV-Vis photodetector. ACS Photonics 2018, 5, 621-629.
[160]
Lu, L.; Liang, Z. M.; Wu, L. M.; Chen, Y. X.; Song, Y. F.; Dhanabalan, S. C.; Ponraj, J. S.; Dong, B. Q.; Xiang, Y. J.; Xing, F. et al. Few-layer bismuthene: Sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability. Laser Photonics Rev. 2018, 12, 1870012.
[161]
Wang, Y. Z.; Huang, W. C.; Zhao, J. L.; Huang, H.; Wang, C.; Zhang, F.; Liu, J.; Li, J. Q.; Zhang, M.; Zhang, H. A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect. J. Mater. Chem. C 2019, 7, 871-878.
[162]
Xing, C. Y.; Xie, Z. J.; Liang, Z. M.; Liang, W. Y.; Fan, T. J.; Ponraj, J. S.; Dhanabalan, S. C.; Fan, D. Y.; Zhang, H. 2D nonlayered selenium nanosheets: Facile synthesis, photoluminescence, and ultrafast photonics. Adv. Opt. Mater. 2017, 5, 1700884.
[163]
Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.
[164]
Wu, L. M.; Huang, W. C.; Wang, Y. Z.; Zhao, J. L.; Ma, D. T.; Xiang, Y. J.; Li, J. Q.; Ponraj, J. S.; Dhanabalan, S. C.; Zhang, H. 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.
[165]
Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.
[166]
Huang, W. C.; Zhang, Y.; You, Q.; Huang, P.; Wang, Y. Z.; Huang, Z. N.; Ge, Y. Q.; Wu, L. M.; Dong, Z. J.; Dai, X. Y. et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 2019, 15, 1900902.
[167]
Xing, C. Y.; Huang, D. Z.; Chen, S. Y.; Huang, Q. C.; Zhou, C. H.; Peng, Z. C.; Li, J. G.; Zhu, X.; Liu, Y. Z.; Liu, Z. P. et al. Engineering lateral heterojunction of selenium-coated tellurium nanomaterials toward highly efficient solar desalination. Adv. Sci. 2019, 6, 1900531.
[168]
Guo, J.; Zhao, J. L.; Huang, D. Z.; Wang, Y. Z.; Zhang, F.; Ge, Y. Q.; Song, Y. F.; Xing, C. Y.; Fan, D. Y.; Zhang, H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. Nanoscale 2019, 11, 6235-6242.
[169]
Yan, J. H.; Zhang, X. Y.; Pan, Y. Y.; Li, J. Z.; Shi, B. W.; Liu, S. Q.; Yang, J.; Song, Z. G.; Zhang, H.; Ye, M. et al. Monolayer tellurene-metal contacts. J. Mater. Chem. C 2018, 6, 6153-6163.
[170]
Molle, A. Xenes: A new emerging two-dimensional materials platform for nanoelectronics. ECS Trans. 2016, 75, 163-173.
[171]
Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163-169.
[172]
Zhang, Z. H.; Yang, Y.; Penev, E. S.; Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 2017, 27, 1605059.
[173]
Bernasconi, M.; Chiarotti, G. L.; Tosatti, E. Ab initio calculations of structural and electronicproperties of gallium solid-state phases. Phys. Rev. B 1995, 52, 9988-9998.
[174]
Shao, Z. G.; Ye, X. S.; Yang, L.; Wang, C. L. First-principles calculation of intrinsic carrier mobility of silicene. J. Appl. Phys. 2013, 114, 093712.
[175]
Liu, N. N.; Bo, G. Y.; Liu, Y. N.; Xu, X.; Du, Y.; Dou, S. X. Recent progress on germanene and functionalized germanene: Preparation, characterizations, applications, and challenges. Small 2019, 15, 1805147.
[176]
Huang, S. X.; Ling, X. Black phosphorus: Optical characterization, properties and applications. Small 2017, 13, 1700823.
[177]
Pauling, L.; Simonetta, M. Bond orbitals and bond energy in elementary phosphorus. J. Chem. Phys. 1952, 20, 29-34.
[178]
Hart, R. R.; Robin, M. B.; Kuebler, N. A. 3p orbitals, bent bonds, and the electronic spectrum of the P4 molecule. J. Chem. Phys. 1965, 42, 3631-3638.
[179]
Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.
[180]
Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112-3115.
[181]
Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982-1021.
[182]
Lee, J.; Tian, W. C.; Wang, W. L.; Yao, D. X. Two-dimensional pnictogen honeycomb lattice: Structure, on-site spin-orbit coupling and spin polarization. Sci. Rep. 2015, 5, 11512.
[183]
Kadioglu, Y.; Kilic, S. B.; Demirci, S.; Akturk, O. Ü.; Aktürk, E.; Ciraci, S. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects. Phys. Rev. B 2017, 96, 245424.
[184]
Wang, D.; Tang, L. M.; Jiang, X. X.; Tan, J. Y.; He, M. D.; Wang, X. J.; Chen, K. Q. High bipolar conductivity and robust in-plane spontaneous electric polarization in selenene. Adv. Electron. Mater. 2019, 5, 1800475.
[185]
Xian, L. D.; Pérez Paz, A.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.
[186]
Xiang, Y.; Gao, S. J.; Xu, R. G.; Wu, W. Z.; Leng, Y. S. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy 2019, 58, 202-210.
[187]
Sharma, S.; Singh, N.; Schwingenschlogl, U. Two-dimensional tellurene as excellent thermoelectric material.ACS Appl. Energy Mater. 2018, 1, 1950-1954.
[188]
Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203-7212.
[189]
Cao, R.; Wang, H. D.; Guo, Z. N.; Sang, D. K.; Zhang, L. Y.; Xiao, Q. L.; Zhang, Y. P.; Fan, D. Y.; Li, J. Q.; Zhang, H. Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 2019, 7, 1900020.
[190]
Yin, Y. L.; Cao, R.; Guo, J. S.; Liu, C. Y.; Li, J.; Feng, X. L.; Wang, H. D.; Du, W.; Qadir, A.; Zhang, H. et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser Photonics Rev. 2019, 13, 1900032.
[191]
Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996-7002.
[192]
Li, J. F.; Luo, H. Y.; Zhai, B.; Lu, R. G.; Guo, Z. N.; Zhang, H.; Liu, Y. Black phosphorus: A two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep. 2016, 6, 30361.
[193]
Kong, L. C.; Qin, Z. P.; Xie, G. Q.; Guo, Z. N.; Zhang, H.; Yuan, P.; Qian, L. J. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 to 2.7 μm wavelength. Laser Phys. Lett. 2016, 13, 045801.
[194]
Ren, X. H.; Li, Z. J.; Huang, Z. Y.; Sang, D.; Qiao, H.; Qi, X.; Li, J. Q.; Zhong, J. X.; Zhang, H. Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv. Funct. Mater. 2017, 27, 1606834.
[195]
Chu, Z. Z.; Liu, J.; Guo, Z. N.; Zhang, H. 2 μm passively Q-switched laser based on black phosphorus. Opt. Mater. Express 2016, 6, 2374-2379.
[196]
Wang, H. D.; Sang, D. K.; Guo, Z. N.; Cao, R.; Zhao, J. L.; Shah, M. N. U.; Fan, T. J.; Fan, D. Y.; Zhang, H. Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 2018, 27, 087308.
[197]
Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.
[198]
Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy Environ. Sci. 2016, 9, 709-728.
[199]
Sun, Z. B.; Zhao, Y. T.; Li, Z. B.; Cui, H. D.; Zhou, Y. Y.; Li, W. H.; Tao, W.; Zhang, H.; Wang, H. Y.; Chu, P. K. et al. TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 2017, 13, 1602896.
[200]
Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891-2912.
[201]
Sergeeva, A. P.; Popov, I. A.; Piazza, Z. A.; Li, W. L.; Romanescu, C.; Wang, L. S.; Boldyrev, A. I. Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 2014, 47, 1349-1358.
[202]
Zhai, H. J.; Kiran, B.; Li, J.; Wang, L. S. Hydrocarbon analogues of boron clusters - planarity, aromaticity and antiaromaticity. Nat. Mater. 2003, 2, 827-833.
[203]
Zhai, H. J.; Zhao, Y. F.; Li, W. L.; Chen, Q.; Bai, H.; Hu, H. S.; Piazza, Z. A.; Tian, W. J.; Lu, H. G.; Wu, Y. B. et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727-731.
[204]
Liu, H. S.; Gao, J. F.; Zhao, J. J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation. Sci. Rep. 2013, 3, 3238.
[205]
Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513-1516.
[206]
Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563-568.
[207]
Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Ionic high-pressure form of elemental boron. Nature 2009, 457, 863-867.
[208]
Ogitsu, T.; Schwegler, E.; Galli, G. β-rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 2013, 113, 3425-3449.
[209]
Peng, B.; Zhang, H.; Shao, H. Z.; Xu, Y. F.; Zhang, R. J.; Zhua, H. Y. The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592-3598.
[210]
Xu, J. Q.; Chang, Y. Y.; Gan, L.; Ma, Y.; Zhai, T. Y. Ultrathin single-crystalline boron nanosheets for enhanced electro-optical performances. Adv. Sci. 2015, 2, 1500023.
[211]
Bosio, L. Crystalstructures of Ga(II) and Ga(III). J. Chem. Phys. 1978, 68, 1221-1223.
[212]
Kenichi, T.; Kazuaki, K.; Masao, A. High-pressure bct-fcc phase transition in Ga. Phys. Rev. B 1998, 58, 2482-2486.
[213]
Schulte, O.; Holzapfel, W. B. Effect of pressure on the atomic volume of Ga and Tl up to 68 GPa. Phys. Rev. B 1997, 55, 8122-8128.
[214]
Steenbergen, K. G.; Gaston, N. First-principles melting of gallium clusters down to nine atoms: Structural and electronic contributions to melting. Phys. Chem. Chem. Phys. 2013, 15, 15325-15332.
[215]
Kochat, V.; Samanta, A.; Zhang, Y.; Bhowmick, S.; Manimunda, P.; Asif, S. A. S.; Stender, A. S.; Vajtai, R.; Singh, A. K.; Tiwary, C. S. et al. Atomically thin gallium layers from solid-melt exfoliation. Sci. Adv. 2018, 4, e1701373.
[216]
Krawiec, M. Functionalization of group-14 two-dimensional materials. J. Phys. Condens. Matter 2018, 30, 233003.
[217]
Pulci, O.; Gori, P.; Marsili, M.; Garbuio, V.; Del Sole, R.; Bechstedt, F. Strong excitons in novel two-dimensional crystals: Silicane and germanane. EPL 2012, 98, 37004.
[218]
Voon, L. C. L. Y.; Zhu, J. J.; Schwingenschlogl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802.
[219]
Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.
[220]
Houssa, M.; Pourtois, G.; Afanas’ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.
[221]
Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R. G.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.
[222]
Drummond, N. D.; Zólyomi, V.; Fal’ko, V. I. Electrically tunable band gap in silicene. Phys. Rev. B 2012, 85, 075423.
[223]
Cai, Y. M.; Chuu, C. P.; Wei, C. M.; Chou, M. Y. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys. Rev. B 2013, 88, 245408.
[224]
Kaloni, T. P.; Schwingenschlögl, U. Stability of germanene under tensile strain. Chem. Phys. Lett. 2013, 583, 137-140.
[225]
Xu, Y.; Tang, P. Z.; Zhang, S. C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B 2015, 92, 081112.
[226]
Vogg, G.; Brandt, M. S.; Stutzmann, M. Polygermyne—A prototype system for layered germanium polymers. Adv. Mater. 2000, 12, 1278-1281.
[227]
Ma, Y. D.; Dai, Y.; Niu, C. W.; Huang, B. B. Halogenated two-dimensional germanium: Candidate materials for being of Quantum Spin Hall state. J. Mater. Chem. 2012, 22, 12587-12591.
[228]
Li, Y. F.; Chen, Z. F. Tuning electronic properties of germanane layers by external electric field and biaxial tensile strain: A computational study. J. Phys. Chem. C 2014, 118, 1148-1154.
[229]
Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B. L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.
[230]
Sahoo, S. K.; Wei, K. H. A perspective on recent advances in 2D stanene nanosheets. Adv. Mater. Interfaces 2019, 6, 1900752.
[231]
Liu, X. H.; Wang, Y.; Li, F.; Li, Y. F. Two-dimensional stanane: Strain-tunable electronic structure, high carrier mobility, and pronounced light absorption. Phys. Chem. Chem. Phys. 2016, 18, 14638-14643.
[232]
Lu, P. F.; Wu, L. Y.; Yang, C. G.; Liang, D.; Quhe, R. G.; Guan, P. F.; Wang, S. M. Quasiparticle and optical properties of strained stanene and stanane. Sci. Rep. 2017, 7, 3912.
[233]
Yu, X. L.; Huang, L.; Wu, J. S.From a normal insulator to a topological insulator in plumbene. Phys. Rev. B 2017, 95, 125113.
[234]
Zhao, H.; Zhang, C. W.; Ji, W. X.; Zhang, R. W.; Li, S. S.; Yan, S. S.; Zhang, B. M.; Li, P.; Wang, P. J. Unexpected giant-gap quantum spin hall insulator in chemically decorated plumbene monolayer. Sci. Rep. 2016, 6, 20152.
[235]
Zhao, H.; Ji, W. X.; Zhang, C. W.; Li, P.; Li, F.; Wang, P. J.; Zhang, R. W. First-principles prediction of a giant-gap quantum spin Hall insulator in Pb thin film. Phys. Chem. Chem. Phys. 2016, 18, 31862-31868.
[236]
Hultgren, R.; Gingrich, N. S.; Warren, B. E.The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-355.
[237]
Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684-685.
[238]
Thurn, H.; Kerbs, H. Crystal structure of violet phosphorus. Angew. Chem., Int. Ed. 1966, 5, 1047-1048.
[239]
Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.
[240]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[241]
Lu, J. P.; Carvalho, A.; Wu, J.; Liu, H. W.; Tok, E. S.; Neto, A. H. C.; Özyilmaz, B.; Sow, C. H. Enhanced photoresponse from phosphorene-phosphorene-suboxide junction fashioned by focused laser micromachining. Adv. Mater. 2016, 28, 4090-4096.
[242]
Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823-18826.
[243]
Takao, Y.; Asahina, H.; Morita, A. Electronicstructure of black phosphorus in tightbinding approach. J. Phys. Soc. Jpn. 1981, 50, 3362-3369.
[244]
Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[245]
Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.
[246]
Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[247]
Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.
[248]
Akturk, O. Ü.; Özçelik, V. O.; Ciraci, S. Single-layer crystalline phases of antimony: Antimonenes. Phys. Rev. B 2015, 91, 235446.
[249]
Wang, G. X.; Pandey, R.; Karna, S. P. Atomically thin group V elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 2015, 7, 11490-11496.
[250]
Singh, D.; Gupta, S. K.; Sonvane, Y.; Lukačević, I. Antimonene: A monolayer material for ultraviolet optical nanodevices. J. Mater. Chem. C 2016, 4, 6386-6390.
[251]
Cheng, L.; Liu, H. J.; Tan, X. J.; Zhang, J.; Wei, J.; Lv, H. Y.; Shi, J.; Tang, X. F. Thermoelectric properties of a monolayer bismuth. J. Phys. Chem. C 2014, 118, 904-910.
[252]
Freitas, R. R. Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, C. M. C.; Kakanakova-Georgieva, A.; Gueorguiev, G. K. Topological insulating phases in two-dimensional bismuth-containing single layers preserved by hydrogenation. J. Phys. Chem. C 2015, 119, 23599-23606.
[253]
Xiao, S. H.; Wei, D. H.; Jin, X. F. Bi(111) thin film with insulating interior but metallic surfaces. Phys. Rev. Lett. 2012, 109, 166805.
[254]
Glass, S.; Reis, F.; Bauernfeind, M.; Aulbach, J.; Scholz, M. R.; Adler, F.; Dudy, L.; Li, G.; Claessen, R.; Schäfer, J. Atomic-scale mapping of layer-by-layer hydrogen etching and passivation of SiC(0001) substrates. J. Phys. Chem. C 2016, 120, 10361-10367.
[255]
Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting Group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 55, 1666-1669.
[256]
Hussain, N.; Liang, T. X.; Zhang, Q. Y.; Anwar, T.; Huang, Y.; Lang, J. L.; Huang, K.; Wu, H. Ultrathin Bi nanosheets with superior photoluminescence. Small 2017, 13, 1701349.
[257]
Liu, Z.; Liu, C. X.; Wu, Y. S.; Duan, W. H.; Liu, F.; Wu, J. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys. Rev. Lett. 2011, 107, 136805.
[258]
Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J. A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B 2009, 246, 1794-1805.
[259]
Lee, T. I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y. S.; Myoung, J. M. et al. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly. Adv. Mater. 2013, 25, 2920-2925.
[260]
Abad, B.; Rull-Bravo, M.; Hodson, S. L.; Xu, X. F.; Martin-Gonzalez, M. Thermoelectric properties of electrodeposited tellurium films and the sodium lignosulfonate effect. Electrochim. Acta 2015, 169, 37-45.
[261]
Sridharan, K.; Ollakkan, M. S.; Philip, R.; Park, T. J. Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se-Te/C core-shell nanostructures. Carbon 2013, 63, 263-273.
[262]
Wang, R. P.; Su, X. Q.; Bulla, D.; Wang, T.; Gai, X.; Yang, Z. Y.; Madden, S.; Luther-Davies, B. Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides. In Proceedings of SPIE9444, International Seminaron Photonics, Optics, and its Applications, Bali, Indonesia, 2015.
[263]
Pradhan, A.; Roy, A.; Tripathi, S.; Som, A.; Sarkar, D.; Mishra, J. K.; Roy, K.; Pradeep, T.; Ravishankar, N.; Ghosh, A. Ultra-high sensitivity infra-red detection and temperature effects in a graphene-tellurium nanowire binary hybrid. Nanoscale 2017, 9, 9284-9290.
[264]
Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253-7263.
[265]
Zhang, Y.; Zhang, F.; Wu, L. M.; Zhang, Y. P.; Huang, W. C.; Tang, Y. F.; Hu, L. P.; Huang, P.; Zhang, X. W.; Zhang, H. Van der Waals integration of bismuth quantum dots-decorated tellurium nanotubes (Te@Bi) heterojunctions and plasma-enhanced optoelectronic applications. Small 2019, 15, 1903233.
[266]
Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228-236.
[267]
Zhu, Z. L.; Cai, X. L.; Yi, S.; Chen, J. L.; Dai, Y. W.; Niu, C. Y.; Guo, Z. X.; Xie, M. H.; Liu, F.; Cho, J. H.et al. Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study. Phys. Rev. Lett. 2017, 119, 106101.
[268]
Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619-4623.
[269]
Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965-3973.
[270]
Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.
[271]
Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.
[272]
Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329-3333.
[273]
Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347-3352.
[274]
Xu, Y. J.; Yuan, J.; Fei, L. F.; Wang, X. L.; Bao, Q. L.; Wang, Y.; Zhang, K.; Zhang, Y. G. Selenium-doped black phosphorus for high-responsivity 2D photodetectors. Small 2016, 12, 5000-5007.
[275]
Liu, Y.; Sun, T.; Ma, W. L.; Yu, W. Z.; Nanjunda, S. B.; Li, S. J.; Bao, Q. L. Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett. 2018, 16, 020002.
[276]
Xiong, X.; Li, X. F.; Huang, M. Q.; Li, T. Y.; Gao, T. T.; Wu, Y. Q. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electr. Device Lett. 2018, 39, 127-130.
[277]
Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P-N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34-41.
[278]
Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.
[279]
Walmsley, T. S.; Chamlagain, B.; Rijal, U.; Wang, T. J.; Zhou, Z. X.; Xu, Y. Q. Gate-tunable photoresponse time in black phosphorus-MoS2 heterojunctions. Adv. Opt. Mater. 2019, 7, 1800832.
[280]
Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292-8299.
[281]
Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M. S. Black phosphorus terahertz photodetectors. Adv. Mater. 2015, 27, 5567-5572.
[282]
Cao, S. W.; Xing, Y. H.; Han, J.; Luo, X.; Lv, W. X.; Lv, W. M.; Zhang, B. S.; Zeng, Z. M. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 2018, 10, 16805-16811.
[283]
Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692-699.
[284]
Ye, L.; Wang, P.; Luo, W. J.; Gong, F.; Liao, L.; Liu, T. D.; Tong, L.; Zang, J. F.; Xu, J. B.; Hu, W. D. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53-60.
[285]
Miao, J. S.; Song, B.; Li, Q.; Cai, L.; Zhang, S. M.; Hu, W. D.; Dong, L. X.; Wang, C. Photothermal effect induced negative photoconductivity and high responsivity in flexible black phosphorus transistors. ACS Nano 2017, 11, 6048-6056.
[286]
Mayorga-Martinez, C. C.; Gusmao, R.; Sofer, Z.; Pumera, M. Pnictogen-based enzymatic phenol biosensors: Phosphorene, arsenene, antimonene, and bismuthene. Angew. Chem., Int. Ed. 2019, 58, 134-138.
[287]
Gusmão, R.; Sofer, Z.; Bouša, D.; Pumera, M. Pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew. Chem., Int. Ed. 2017, 56, 14417-14422.
[288]
Ares, P.; Aguilar-Galindo, F.; Rodriguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcami, M.; Martin, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332-6336.
[289]
Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A. P.; Gudmundsson, J. T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 2006, 513, 1-24.
[290]
Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945-2986.
[291]
Zhong, Q.; Kong, L. J.; Gou, J.; Li, W. B.; Sheng, S. X.; Yang, S.; Cheng, P.; Li, H.; Wu, K. H.; Chen, L. Synthesis of borophene nanoribbons on Ag(110) surface. Phys. Rev. Mater. 2017, 1, 021001.
[292]
Wu, R. T.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44-49.
[293]
Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816-3822.
[294]
Xing, Y.; Zhang, H. M.; Fu, H. L.; Liu, H. W.; Sun, Y.; Peng, J. P.; Wang, F.; Lin, X.; Ma, X. C.; Xue, Q. K. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 2015, 350, 542-545.
[295]
Tao, M. L.; Tu, Y. B.; Sun, K.; Wang, Y. L.; Xie, Z. B.; Liu, L.; Shi, M. X.; Wang, J. Z. Gallenene epitaxially grown on Si(111). 2D Mater. 2018, 5, 035009.
[296]
Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.
[297]
Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.
[298]
Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507-3511.
[299]
Lin, C. L.; Arafune, R.; Kawahara, K.; Tsukahara, N.; Minamitani, E.; Kim, Y.; Takagi, N.; Kawai, M. Structure of silicene grown on Ag(111). Appl. Phys. Express 2012, 5, 045802.
[300]
Jamgotchian, H.; Colignon, Y.; Hamzaoui, N.; Ealet, B.; Hoarau, J. Y.; Aufray, B.; Bibérian, J. P. Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature. J. Phys. Condens. Matter 2012, 24, 172001.
[301]
Chen, L.; Liu, C. C.; Feng, B. J.; He, X. Y.; Cheng, P.; Ding, Z. J.; Meng, S.; Yao, Y. G.; Wu, K. H. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys. Rev. Lett. 2012, 109, 056804.
[302]
Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys. Condens. Matter 2012, 24, 314211.
[303]
Resta, A.; Leoni, T.; Barth, C.; Ranguis, A.; Becker, C.; Bruhn, T.; Vogt, P.; Le Lay, G. Atomic structures of silicene layers grown on Ag(111): Scanning tunneling microscopy and noncontact atomic force microscopy observations. Sci. Rep. 2013, 3, 3298.
[304]
Sone, J.; Yamagami, T.; Aoki, Y.; Nakatsuji, K.; Hirayama, H. Epitaxial growth of silicene on ultra-thin Ag(111) films. New J. Phys. 2014, 16, 095004.
[305]
Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.
[306]
Grazianetti, C.; Chiappe, D.; Cinquanta, E.; Fanciulli, M.; Molle, A. Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(111). J. Phys. Condens. Matter 2015, 27, 255005.
[307]
Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.
[308]
Aizawa, T.; Suehara, S.; Otani, S. Silicene on zirconium carbide (111). J. Phys. Chem. C 2014, 118, 23049-23057.
[309]
Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096-2101.
[310]
Podsiadly-Paszkowska, A.; Krawiec, M. Dirac fermions in silicene on Pb(111) surface. Phys. Chem. Chem. Phys. 2015, 17, 2246-2251.
[311]
Morishita, T.; Spencer, M. J. S.; Kawamoto, S.; Snook, I. K. A new surface and structure for silicene: Polygonal silicene formation on the Al(111) surface. J. Phys. Chem. C 2013, 117, 22142-22148.
[312]
Bhattacharya, A.; Bhattacharya, S.; Das, G. P. Exploring semiconductor substrates for silicene epitaxy. Appl. Phys. Lett. 2013, 103, 123113.
[313]
Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510-2516.
[314]
Stephan, R.; Hanf, M. C.; Derivaz, M.; Dentel, D.; Asensio, M. C.; Avila, J.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Germanene on Al(111): Interface electronic states and charge transfer. J. Phys. Chem. C 2016, 120, 1580-1585.
[315]
Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.
[316]
Dávila, M. E.; Le Lay, G. Few layer epitaxial germanene: A novel two-dimensional Dirac material. Sci. Rep. 2016, 6, 20714.
[317]
Bampoulis, P.; Zhang, L.; Safaei, A.; van Gastel, R.; Poelsema, B.; Zandvliet, H. J. W. Germanene termination of Ge2Pt crystals on Ge(110). J. Phys. Condens. Matter 2014, 26, 442001.
[318]
Acun, A.; Zhang, L.; Bampoulis, P.; Farmanbar, M.; van Houselt, A.; Rudenko, A. N.; Lingenfelder, M.; Brocks, G.; Poelsema, B.; Katsnelson, M. I. et al. Germanene: The germanium analogue of graphene. J. Phys. Condens. Matter 2015, 27, 443002.
[319]
Zhang, L.; Bampoulis, P.; Rudenko, A. N.; Yao, Q.; van Houselt, A.; Poelsema, B.; Katsnelson, M. I.; Zandvliet, H. J. W. Structural and electronic properties of germanene on MoS2. Phys. Rev. Lett. 2016, 117, 256804.
[320]
Gou, J.; Zhong, Q.; Sheng, S. X.; Li, W. B.; Cheng, P.; Li, H.; Chen, L.; Wu, K. H. Strained monolayer germanene with 1 × 1 lattice on Sb(111). 2D Mater. 2016, 3, 045005.
[321]
Massara, N.; Marjaoui, A.; Stephan, R.; Hanf, M. C.; Derivaz, M.; Dentel, D.; Hajjar-Garreau, S.; Mehdaoui, A.; Diani, M.; Sonnet, P.et al. Experimental molecular adsorption: Electronic buffer effect of germanene on Al(111). 2D Mater. 2019, 6, 035016.
[322]
Ni, Z. Y.; Minamitani, E.; Ando, Y.; Watanabe, S. Germanene and stanene on two-dimensional substrates: Dirac cone and Z2 invariant. Phys. Rev. B 2017, 96, 075427.
[323]
Gao, J. F.; Zhang, G.; Zhang, Y. W. Exploring Ag(111) substrate for epitaxially growing monolayer stanene: A first-principles study. Sci. Rep. 2016, 6, 29107.
[324]
Gou, J.; Kong, L. J.; Li, H.; Zhong, Q.; Li, W. B.; Cheng, P.; Chen, L.; Wu, K. H. Strain-induced band engineering in monolayer stanene on Sb(111). Phys. Rev. Mater. 2017, 1, 054004.
[325]
Deng, J. L.; Xia, B. Y.; Ma, X. C.; Chen, H. Q.; Shan, H.; Zhai, X. F.; Li, B.; Zhao, A. D.; Xu, Y.; Duan, W. H. et al. Epitaxial growth of ultraflat stanene with topological band inversion. Nat. Mater. 2018, 17, 1081-1086.
[326]
Yuhara, J.; He, B. J.; Matsunami, N.; Nakatake, M.; Le Lay, G. Graphene’s latest cousin: Plumbene epitaxial growth on a “nano watercube”. Adv. Mater. 2019, 31, 1901017.
[327]
Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Di Yuan, K. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903-4908.
[328]
Zhang, J. L.; Zhao, S. T.; Sun, S.; Niu, T. C.; Zhou, X.; Gu, C. D.; Han, C.; Di Yuan, K.; Guo, R.; Wang, L. et al. Phosphorus nanostripe arrays on Cu(110): A case study to understand the substrate effect on the phosphorus thin film growth. Adv. Mater. Interfaces 2017, 4, 1601167.
[329]
Fortin-Deschenes, M.; Moutanabbir, O. Recovering the semiconductor properties of the epitaxial group V 2D materials antimonene and arsenene. J. Phys. Chem. C 2018, 122, 9162-9168.
[330]
Fortin-Deschênes, M.; Waller, O.; Menteş, T. O.; Locatelli, A.; Mukherjee, S.; Genuzio, F.; Levesque, P. L.; Hébert, A.; Martel, R.; Moutanabbir, O. Synthesis of antimonene on germanium. Nano Lett. 2017, 17, 4970-4975.
[331]
Mao, Y. H.; Zhang, L. F.; Wang, H. L.; Shan, H.; Zhai, X. F.; Hu, Z. P.; Zhao, A. D.; Wang, B. Epitaxial growth of highly strained antimonene on Ag(111). Front. Phys. 2018, 13, 138106.
[332]
Chen, H. A.; Sun, H.; Wu, C. R.; Wang, Y. X.; Lee, P. H.; Pao, C. W.; Lin, S. Y. Single-crystal antimonene films prepared by molecular beam epitaxy: Selective growth and contact resistance reduction of the 2D material heterostructure. ACS Appl. Mater. Interfaces 2018, 10, 15058-15064.
[333]
Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.
[334]
Walker, E. S.; Na, S. R.; Jung, D.; March, S. D.; Kim, J. S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M. L.; Liechti, K. M. et al. Large-area dry transfer of single-crystalline epitaxial bismuth thin films. Nano Lett. 2016, 16, 6931-6938.
[335]
Ismail, R. A.; Hassoon, K. I.; Abdulrazzaq, O. A. Elicitation of barrier height of rapid thermal annealed Bi-nSi Schottky photodetector using various methods: A comparative study. Optik 2019, 188, 46-51.
[336]
Nagao, T.; Sadowski, J. T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7. Phys. Rev. Lett. 2004, 93, 105501.
[337]
Nagao, T.; Yaginuma, S.; Saito, M.; Kogure, T.; Sadowski, J. T.; Ohno, T.; Hasegawa, S.; Sakurai, T. Strong lateral growth and crystallization via two-dimensional allotropic transformation of semi-metal Bi film. Surf. Sci. 2005, 590, 247-252.
[338]
Kammler, M.; Horn-von Hoegen, M. Low energy electron diffraction of epitaxial growth of bismuth on Si(111). Surf.Sci. 2005, 576, 56-60.
[339]
Pan, S. W.; Qi, D. F.; Chen, S. Y.; Li, C.; Huang, W.; Lai, H. K. Se ultrathin film growth on Si(100) substrate and its application in Ti/n-Si(100) ohmic contact. Acta Phys. Sin. 2011, 60, 712-716.
[340]
Luo, L. B.; Yang, X. B.; Liang, F. X.; Jie, J. S.; Li, Q.; Zhu, Z. F.; Wu, C. Y.; Yu, Y. Q.; Wang, L. Transparent and flexible selenium nanobelt-based visible light photodetector. Crystengcomm 2012, 14, 1942-1947.
[341]
Zheng, L. X.; Hu, K.; Teng, F.; Fang, X. S. Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2nanotubes heterojunction. Small 2017, 13, 1602448.
[342]
Hu, K.; Teng, F.; Zheng, L. X.; Yu, P. P.; Zhang, Z. M.; Chen, H. Y.; Fang, X. S. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev. 2017, 11, 1600257.
[343]
Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett. 2018, 18, 4697-4703.
[344]
Qin, J. K.; Yan, H.; Qiu, G.; Si, M. W.; Miao, P.; Duan, Y. Q.; Shao, W. Z.; Zhen, L.; Xu, C. Y.; Ye, P. D. Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures. Nano Res. 2019, 12, 669-674.
[345]
Chang, Y.; Chen, L.; Wang, J. Y.; Tian, W.; Zhai, W.; Wei, B. B. Self-powered broadband schottky junction photodetector based on a single selenium microrod. J. Phys. Chem. C 2019, 123, 21244-21251.
[346]
Chen, Y. Z.; You, Y. T.; Chen, P. J.; Li, D. P.; Su, T. Y.; Lee, L.; Shih, Y. C.; Chen, C. W.; Chang, C. C.; Wang, Y. C. et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range photoresponse from ultraviolet to infrared wavelengths. ACS Appl. Mater. Interfaces 2018, 10, 35477-35486.
[347]
Chen, J. L.; Dai, Y. W.; Ma, Y. Q.; Dai, X. Q.; Ho, W.; Xie, M. H. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale 2017, 9, 15945-15948.
[348]
Hegazy, M.; Refaat, T.; Abedin, N.; Elsayed-Ali, H. Quantum-dot infrared photodetector fabricated by pulsed laser deposition technique. J. Laser Micro/Nanoen. 2006, 1, 111-114.
[349]
Carter, A. C.; Horwitz, J. S.; Chrisey, D. B.; Pond, J. M.; Kirchoefer, S. W.; Chang, W. T. Pulsed laser deposition of ferroelectric thin films for room temperature active microwave electronics. Integr. Ferroelectr. 1997, 17, 273-285.
[350]
Yang, Z. B.; Hao, J. H.; Yuan, S. G.; Lin, S. H.; Yau, H. M.; Dai, J. Y.; Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 2015, 27, 3748-3754.
[351]
Apte, A.; Bianco, E.; Krishnamoorthy, A.; Yazdi, S.; Rao, R.; Glavin, N.; Kumazoe, H.; Varshney, V.; Roy, A.; Shimojo, F. et al. Polytypism in ultrathin tellurium. 2D Mater. 2019, 6, 015013.
[352]
Tai, G. A.; Hu, T. S.; Zhou, Y. G.; Wang, X. F.; Kong, J. Z.; Zeng, T.; You, Y. C.; Wang, Q. Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473-15477.
[353]
Sofer, Z.; Sedmidubsky, D.; Huber, Š.; Luxa, J.; Bouša, D.; Boothroyd, C.; Pumera, M. Layered black phosphorus: Strongly anisotropic magnetic, electronic, and electron-transfer properties. Angew. Chem., Int. Ed. 2016, 55, 3382-3386.
[354]
Smith, J. B.; Hagaman, D.; Ji, H. F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 2016, 27, 215602.
[355]
Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.
[356]
Li, H. L.; Jing, L.; Liu, W. W.; Lin, J. J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. Scalable production of few-layer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance. ACS Nano 2018, 12, 1262-1272.
[357]
Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338-13341.
[358]
Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887-1892.
[359]
Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.
[360]
Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano2015, 9, 3596-3604.
[361]
Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688-11693.
[362]
Wang, H.; Yang, X. Z.; Shao, W.; Chen, S. C.; Xie, J. F.; Zhang, X. D.; Wang, J.; Xie, Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J. Am. Chem. Soc. 2015, 137, 11376-11382.
[363]
Woomer, A. H.; Farnsworth, T. W.; Hu, J.; Wells, R. A.; Donley, C. L.; Warren, S. C. Phosphorene: Synthesis, scale-up, and quantitative optical spectroscopy. ACS Nano 2015, 9, 8869-8884.
[364]
Beladi-Mousavi, S. M.; Pourrahimi, A. M.; Sofer, Z.; Pumera, M. Atomically thin 2D-arsenene by liquid-phased exfoliation: Toward selective vapor sensing. Adv. Funct. Mater. 2019, 29, 1807004.
[365]
Qi, Z. H.; Hu, Y.; Jin, Z.; Ma, J. Tuning the liquid-phase exfoliation of arsenic nanosheets by interaction with various solvents. Phys. Chem. Chem. Phys. 2019, 21, 12087-12090.
[366]
Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G. et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chem., Int. Ed. 2016, 55, 14345-14349.
[367]
Gu, J. N.; Du, Z. G.; Zhang, C.; Ma, J. G.; Li, B.; Yang, S. B. Liquid-phase exfoliated metallic antimony nanosheets toward high volumetric sodium storage. Adv. Energy Mater. 2017, 7, 1700447.
[368]
Yang, Q. Q.; Liu, R. T.; Huang, C.; Huang, Y. F.; Gao, L. F.; Sun, B.; Huang, Z. P.; Zhang, L.; Hu, C. X.; Zhang, Z. Q. et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale 2018, 10, 21106-21115.
[369]
Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. L.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.
[370]
Kumar, P.; Singh, J.; Pandey, A. C. Rational low temperature synthesis and structural investigations of ultrathin bismuth nanosheets. RSC Adv. 2013, 3, 2313-2317.
[371]
Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Freestanding borophene and its hybrids. Adv. Mater. 2019, 31, 1900353.
[372]
Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem., Int. Ed. 2017, 56, 10443-10445.
[373]
Xiao, H.; Zhao, M.; Zhang, J. J.; Ma, X. F.; Zhang, J.; Hu, T. J.; Tang, T.; Jia, J. F.; Wu, H. S. Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun. 2018, 89, 10-13.
[374]
Tchalala, M. R.; Ali, M. A.; Enriquez, H.; Kara, A.; Lachgar, A.; Yagoubi, S.; Foy, E.; Vega, E.; Bendounan, A.; Silly, M. G. et al. Silicon sheets by redox assisted chemical exfoliation. J. Phys. Condens. Matter 2013, 25, 442001.
[375]
Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.; Nonaka, T.; Seno, Y.; Nakamura, H. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem., Int. Ed. 2006, 45, 6303-6306.
[376]
Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem., Int. Ed. 2017, 56, 14718-14722.
[377]
Pei, J. J.; Gai, X.; Yang, J.; Wang, X. B.; Yu, Z. F.; Choi, D. Y.; Luther-Davies, B.; Lu, Y. R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.
[378]
Han, Z. J.; Murdock, A. T.; Seo, D. H.; Bendavid, A. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Mater. 2018, 5, 032002.
[379]
Tsai, H. S.; Hsiao, C. H.; Lin, Y. P.; Chen, C. W.; Ouyang, H.; Liang, J. H. Fabrication of multilayer borophene on insulator structure. Small 2016, 12, 5251-5255.
[380]
Tsai, H. S.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Liang, J. H. Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. Nanoscale 2016, 8, 9488-9492.
[381]
Tsai, H. S.; Chen, Y. Z.; Medina, H.; Su, T. Y.; Chou, T. S.; Chen, Y. H.; Chueh, Y. L.; Liang, J. H. Direct formation of large-scale multi-layered germanene on Si substrate. Phys. Chem. Chem. Phys. 2015, 17, 21389-21393.
[382]
Kang, D. H.; Jeon, M. H.; Jang, S. K.; Choi, W. Y.; Kim, K. N.; Kim, J.; Lee, S.; Yeom, G. Y.; Park, J. H. Self-assembled layer (SAL)-based doping on black phosphorus (BP) transistor and photodetector. ACS Photonics 2017, 4, 1822-1830.
[383]
Jia, J. Y.; Jang, S. K.; Lai, S.; Xu, J.; Choi, Y. J.; Park, J. H.; Lee, S. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 2015, 9, 8729-8736.
[384]
Tsai, H. S.; Wang, S. W.; Hsiao, C. H.; Chen, C. W.; Ouyang, H.; Chueh, Y. L.; Kuo, H. C.; Liang, J. H. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem. Mater. 2016, 28, 425-429.
[385]
Tsai, H. S.; Chen, C. W.; Hsiao, C. H.; Ouyang, H.; Liang, J. H. The advent of multilayer antimonene nanoribbons with room temperature orange light emission. Chem. Commun. 2016, 52, 8409-8412.
[386]
Li, J. H.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Photosensitive graphene transistors. Adv. Mater. 2014, 26, 5239-5273.
[387]
Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156.
[388]
Lauer, R. B.; Williams, F. Photoelectronic properties of graded composition crystals of II-VI semiconductors. J. Appl. Phys. 1971, 42, 2904-2910.
[389]
Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C. Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222-10229.
[390]
Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070-8077.
[391]
Suess, R. J.; Leong, E.; Garrett, J. L.; Zhou, T.; Salem, R.; Munday, J. N.; Murphy, T. E.; Mittendorff, M. Mid-infrared time-resolved photoconduction in black phosphorus. 2D Mater. 2016, 3, 041006.
[392]
Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.
[393]
Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391-400.
[394]
Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363-368.
[395]
Sun, Z. H.; Liu, Z. K.; Li, J. H.; Tai, G. A.; Lau, S. P.; Yan, F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 2012, 24, 5878-5883.
[396]
Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[397]
Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p-n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.
[398]
Wang, J. Y.; Chang, Y.; Huang, L. F.; Jin, K. X.; Tian, W. Designing CdS/Se heterojunction as high-performance self-powered UV-visible broadband photodetector. APL Mater. 2018, 6, 076106.
[399]
Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.
[400]
Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562-566.
[401]
Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688-4692.
[402]
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
Nano Research
Pages 891-918
Cite this article:
Wang B, Zhong S, Ge Y, et al. Present advances and perspectives of broadband photo-detectors based on emerging 2D-Xenes beyond graphene. Nano Research, 2020, 13(4): 891-918. https://doi.org/10.1007/s12274-020-2749-1
Topics:

1028

Views

39

Crossref

N/A

Web of Science

41

Scopus

6

CSCD

Altmetrics

Received: 29 November 2019
Revised: 16 January 2020
Accepted: 07 March 2020
Published: 26 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return