Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode

Eryang Mao1Wenyu Wang1Mintao Wan1Li Wang2 ()Xiangming He2Yongming Sun1()
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

High-capacity lithium-containing alloy anodes (e.g., Li4.4Si, Li4.4Sn, and Li3P) enable lithium-free cathodes (e.g., Sulfur, V2O5, and FeF3) to produce next-generation lithium-ion batteries (LIBs) with high energy density. Herein, we design a Li3P/C nanocomposite with Li3P ultrafine nanodomains embedded in micrometer-scale porous carbon particles. Benefiting from the unique micro/nanostructure of the Li3P/C nanocomposite, electrons transfer rapidly through the conductive pathway provided by the porous carbon framework and the volume change between Li3P and P is confined in the nanopores of the carbon, which avoids the collapse of the whole Li3P/C composite particles. As expected, the as-achieved Li3P/C nanocomposite provided a high available lithium-ion capacity of 791 mAh/g (calculated based on the mass of Li3P/C) at 0.1 C during the initial delithiation process. Meanwhile, the Li3P/C nanocomposite showed 75% of its 0.5 C capacity at 6 C and stable cycling stability.

Electronic Supplementary Material

Download File(s)
12274_2020_2756_MOESM1_ESM.pdf (2 MB)

References

[1]
Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35-53.
[2]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[3]
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
[4]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
[5]
Manthiram, A. An outlook on lithium ion battery technology. ACS Central Sci. 2017, 3, 1063-1069.
[6]
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
[7]
Whittingham, M. S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414-11443.
[8]
Yan, P. F.; Zheng, J. M.; Liu, J.; Wang, B. Q.; Cheng, X. P.; Zhang, Y. F.; Sun, X. L.; Wang, C. M.; Zhang, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 2018, 3, 600-605.
[9]
Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936-943.
[10]
Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y. M. High-performance battery electrodes via magnetic templating. Nat. Energy 2016, 1, 16099.
[11]
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[12]
Chen, X. Y.; Zhu, H. L.; Chen, Y. C.; Shang, Y. Y.; Cao, A. Y.; Hu, L. B.; Rubloff, G. W. Mwcnt/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 2012, 6, 7948-7955.
[13]
Li, H.; Balaya, P.; Maier, J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J. Electrochem. Soc. 2004, 151, A1878.
[14]
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.
[15]
Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
[16]
Zheng, G. Y.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H. B.; Wang, H. T.; Li, W. Y.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618-623.
[17]
Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180-186.
[18]
Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
[19]
Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16-21.
[20]
Wang, C.; Yu, J. M.; Li, S. H.; Lu, Z. D. Boosting the cycling stability of Li Si alloy microparticles through electroless copper deposition. Chem. Eng. J. 2019, 370, 1019-1026.
[21]
Jiang, M. W.; Yu, Y.; Fan, H. M.; Xu, H.; Zheng, Y. H.; Huang, Y. H.; Li, S.; Li, J. Full-cell cycling of a self-supporting aluminum foil anode with a phosphate conversion coating. ACS Appl. Mater. Interfaces 2019, 11, 15656-15661.
[22]
Xu, H.; Li, S.; Chen, X. L.; Zhang, C.; Liu, W. J.; Fan, H. M.; Yu, Y.; Huang, Y. H.; Li, J. Sn-alloy foil electrode with mechanical prelithiation: Full-cell performance up to 200 cycles. Adv. Energy Mater. 2019, 9, 1902150.
[23]
Xu, H.; Li, S.; Zhang, C.; Chen, X. L.; Liu, W. J.; Zheng, Y. H.; Xie, Y.; Huang, Y. H.; Li, J. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ. Sci. 2019, 12, 2991-3000.
[24]
Zhao, J.; Zhou, G. M.; Yan, K.; Xie, J.; Li, Y. Z.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J. Y. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat. Nanotechnol. 2017, 12, 993-999.
[25]
Corbridge, D. E. C. Phosphorus: Chemistry, Biochemistry and Technology; 6th ed. CRC Press: Boca Raton, FL, 2013.
[26]
Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.
[27]
Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.
[28]
Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem., Int. Ed. 2012, 51, 9034-9037.
[29]
Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.
[30]
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
[31]
Ohzuku, T.; Iwakoshi, Y.; Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 1993, 140, 2490-2498.
[32]
Liu, Q. Q.; Du, C. Y.; Shen, B.; Zuo, P. J.; Cheng, X. Q.; Ma, Y. L.; Yin, G. P.; Gao, Y. Z. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Adv. 2016, 6, 88683-88700.
[33]
Li, W.; Liu, J.; Zhao, D. Y. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.
[34]
Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 2019, 3, 1080-1093.
Nano Research
Pages 1122-1126
Cite this article:
Mao E, Wang W, Wan M, et al. Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 2020, 13(4): 1122-1126. https://doi.org/10.1007/s12274-020-2756-2
Topics:
Metrics & Citations  
Article History
Copyright
Return