AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems

Wenya He1,2Xiaoyan Ren1Zhiqiang Yan1( )Jin Wang3( )Lehui Lu1( )
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
University of Chinese Academy of Sciences, Beijing 100039, China
Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York 11790, USA
Show Author Information

Graphical Abstract

Abstract

The performance of water purification by adsorption method has been limited owing to the fact that most of current available adsorbents fail to achieve satisfactory removal performance for organic micropollutants. Herein, we report the design and synthesis of novel porous polymeric adsorbent built from β-cyclodextrin (β-CD), in which β-CD molecules are arranged in an ordered bis (β-CD) tubular assemblies. The induction of bis (β-CD) units renders them high adsorption affinity toward bisphenols (bisphenol A and its analogues bisphenol B, bisphenol F and bisphenol S), the typical endocrine disruptors, via the formation of stable host-guest inclusion complexes in aquatic systems. In combination with their high porosity (Brunauer-Emmett-Teller (BET) surface area of 150 m2·g-1), abundant β-CD content and fast sorption kinetics, the obtained adsorbent outperforms commercial water purifier in elimination of bisphenol micropollutants from potable water. Our work may open a new avenue for designing highly efficient adsorbents for removal of organic micropollutants from aquatic systems.

Electronic Supplementary Material

Download File(s)
12274_2020_2758_MOESM1_ESM.pdf (4.8 MB)

References

[1]
Staples, C. A.; Dome, P. B.; Klecka, G. M.; Oblock, S. T.; Harris, L. R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 1998, 36, 2149-2173.
[2]
Fu, P. Q.; Kawamura, K. Ubiquity of bisphenol A in the atmosphere. Environ. Pollut. 2010, 158, 3138-3143.
[3]
Ben-Jonathan, N.; Hugo, E. R.; Brandebourg, T. D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol. 2009, 304, 49-54.
[4]
Boucher, J. G.; Boudreau, A.; Atlas, E. Bisphenol A induces differentiation of human preadipocytes in the absence of glucocorticoid and is inhibited by an estrogen-receptor antagonist. Nutr. Diabetes 2014, 4, e102.
[5]
Héliès-Toussaint, C.; Peyre, L.; Costanzo, C.; Chagnon, M. C.; Rahmani, R. Is bisphenol S a safe substitute for bisphenol A in terms of metabolic function? An in vitro study. Toxicol. Appl. Pharmacol. 2014, 280, 224-235.
[6]
Arampatzidou, A.; Voutsa, D.; Deliyanni, E. Removal of bisphenol A by Fe-impregnated activated carbons. Environ. Sci. Pollut. Res. 2018, 25, 25869-25879.
[7]
Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38-70.
[8]
Zhang, H.; Wang, H.; Wang, F. F.; Wei, J. F.; Zhou, X. Y.; Ji, Y. L. Fabrication of hydrophilic and hydrophobic site on polypropylene nonwoven for removal of bisphenol A from water: Explorations on adsorption behaviors, mechanisms and configurational influence. J. Polym. Res. 2017, 24, 171.
[9]
Ali, I.; Gupta, V. K. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661-2667.
[10]
Bhatnagar, A.; Anastopoulos, I. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review. Chemosphere 2017, 168, 885-902.
[11]
Katsigiannis, A.; Noutsopoulos, C.; Mantziaras, J.; Gioldasi, M. Removal of emerging pollutants through granular activated carbon. Chem. Eng. J. 2015, 280, 49-57.
[12]
Paredes, L.; Alfonsin, C.; Allegue, T.; Omil, F.; Carballa, M. Integrating granular activated carbon in the post-treatment of membrane and settler effluents to improve organic micropollutants removal. Chem. Eng. J. 2018, 345, 79-86.
[13]
Chiang, P. C.; Chang, E. E.; Wu, J. S. Comparison of chemical and thermal regeneration of aromatic compounds on exhausted activated carbon. Water Sci. Technol. 1997, 35, 279-285.
[14]
San Miguel, G.; Lambert, S. D.; Graham, N. J. D. The regeneration of field-spent granular-activated carbons. Water Res. 2001, 35, 2740-2748.
[15]
Bautista-Toledo, I.; Ferro-García, M. A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F. J. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39, 6246-6250.
[16]
Wang, S. B.; Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11-24.
[17]
Shen, Y. H. Phenol sorption by organoclays having different charge characteristics. Colloids Surf. A: Physicochem. Eng. Aspects 2004, 232, 143-149.
[18]
Li, J.; Zhan, Y. H.; Lin, J. W.; Jiang, A.; Xi, W. Removal of bisphenol A from aqueous solution using cetylpyridinium bromide (CPB)-modified natural zeolites as adsorbents. Environ. Earth Sci. 2014, 72, 3969-3980.
[19]
Xu, J.; Wang, L.; Zhu, Y. F. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418-8425.
[20]
Fang, Z.; Hu, Y. Y.; Wu, X. S.; Qin, Y. Z.; Cheng, J. H.; Chen, Y. C.; Tan, P.; Li, H. Q. A novel magnesium ascorbyl phosphate graphene-based monolith and its superior adsorption capability for bisphenol A. Chem. Eng. J. 2018, 334, 948-956.
[21]
Fang, Z.; Hu, Y. Y.; Zhang, W. W.; Ruan, X. Shell-free three-dimensional graphene-based monoliths for the aqueous adsorption of organic pollutants. Chem. Eng. J. 2017, 316, 24-32.
[22]
Wang, P.; Xiao, P. Y.; Zhong, S. X.; Chen, J. R.; Lin, H. J.; Wu, X. L. Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. J. Mater. Chem. A 2016, 4, 15450-15456.
[23]
Kuo, C. Y. Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A. Desalination 2009, 249, 976-982.
[24]
Jun, L. Y.; Mubarak, N. M.; Yee, M. J.; Yon, L. S.; Bing, C. H.; Khalid, M.; Abdullah, E. C. An overview of functionalised carbon nanomaterial for organic pollutant removal. J. Ind. Eng. Chem. 2018, 67, 175-186.
[25]
Xiao, G. Q.; Fu, L. C.; Li, A. M. Enhanced adsorption of bisphenol A from water by acetylaniline modified hyper-cross-linked polymeric adsorbent: Effect of the cross-linked bridge. Chem. Eng. J. 2012, 191, 171-176.
[26]
Park, E. Y.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive removal of bisphenol A from water with a metal-organic framework, a porous chromium-benzenedicarboxylate. J. Nanosci. Nanotechnol. 2013, 13, 2789-2794.
[27]
Zhou, M. M.; Wu, Y. N.; Qiao, J. L.; Zhang, J.; McDonald, A.; Li, G. T.; Li, F. T. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). J. Colloid Interface Sci. 2013, 405, 157-163.
[28]
Liu, Y.; Zhong, G. X.; Liu, Z. C.; Meng, M. J.; Liu, F. F.; Ni, L. Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. Chem. Eng. J. 2016, 296, 437-446.
[29]
Asada, T.; Oikawa, K.; Kawata, K.; Ishihara, S.; Iyobe, T.; Yamada, A. Study of removal effect of bisphenol A and β-estradiol by porous carbon. J. Health Sci. 2004, 50, 588-593.
[30]
Krause, R. W.; Mamba, B. B.; Bambo, F. M.; Malefetse, T. J. Cyclodextrin polymers: Synthesis and application in water treatment. In Cyclodextrins: Chemistry and Physics; Hu, J., Ed.; Transworld Research Network: Kerala, India, 2010; pp 185-210.
[31]
Morin-Crini, N.; Crini, G. Environmental applications of water-insoluble β-cyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38, 344-368.
[32]
Sikder, M. T.; Rahman, M. M.; Jakariya, M.; Hosokawa, T.; Kurasaki, M.; Saito, T. Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chem. Eng. J. 2019, 355, 920-941.
[33]
Gidwani, B.; Vyas, A. Synthesis, characterization and application of epichlorohydrin-β-cyclodextrin polymer. Colloids Surf. B: Biointerfaces 2014, 114, 130-137.
[34]
Yang, Z. X.; Chen, Y.; Liu, Y. Inclusion complexes of bisphenol A with cyclomaltoheptaose (β-cyclodextrin): Solubilization and structure. Carbohydr. Res. 2008, 343, 2439-2442.
[35]
Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L. D.; Fenyvesi, É.; Crini, G. Water-insoluble β-cyclodextrin-epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci 2018, 78, 1-23.
[36]
Liu, H. H.; Cai, X. Y.; Wang, Y.; Chen, J. W. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 2011, 45, 3499-3511.
[37]
Wang, Z. H.; Zhang, P. B.; Hu, F.; Zhao, Y. F.; Zhu, L. P. A crosslinked β-cyclodextrin polymer used for rapid removal of a broad-spectrum of organic micropollutants from water. Carbohydr. Polym. 2017, 177, 224-231.
[38]
Morales-Sanfrutos, J.; Lopez-Jaramillo, F. J.; Elremaily, M. A. A.; Hernández-Mateo, F.; Santoyo-Gonzalez, F. Divinyl sulfone cross-linked cyclodextrin-based polymeric materials: Synthesis and applications as sorbents and encapsulating agents. Molecules 2015, 20, 3565-3581.
[39]
Kono, H.; Nakamura, T. Polymerization of β-cyclodextrin with 1,2,3,4-butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. React. Funct. Polym. 2013, 73, 1096-1102.
[40]
Tang, P. X.; Sun, Q. M.; Suo, Z. L.; Zhao, L. D.; Yang, H. Q.; Xiong, X. N.; Pu, H. Y.; Gan, N.; Li, H. Rapid and efficient removal of estrogenic pollutants from water by using beta- and gamma-cyclodextrin polymers. Chem. Eng. J. 2018, 344, 514-523.
[41]
Alsbaiee, A.; Smith, B. J.; Xiao, L. L.; Ling, Y. H.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190-194.
[42]
De Souza, Í. F. T.; Petri, D. F. S. β-Cyclodextrin hydroxypropyl methylcellulose hydrogels for bisphenol A adsorption. J. Mol. Liq. 2018, 266, 640-648.
[43]
Liu, J.; Yang, Y. M.; Bai, J. W.; Wen, H.; Chen, F. J.; Wang, B. D. Hyper-cross-linked porous MoS2-cyclodextrin-polymer frameworks: Durable removal of aromatic phenolic micropollutant from water. Anal. Chem. 2018, 90, 3621-3627.
[44]
Li, X. M.; Zhou, M. J.; Jia, J. X.; Ma, J. T.; Jia, Q. Design of a hyper-crosslinked β-cyclodextrin porous polymer for highly efficient removal toward bisphenol A from water. Sep. Purif. Technol. 2018, 195, 130-137.
[45]
Kumprecht, L.; Buděšínský, M.; Vondrášek, J.; Vymětal, J.; Černý, J.; Císařová, I.; Brynda, J.; Herzig, V.; Koutník, P.; Závada, J. et al. Rigid duplex α-cyclodextrin reversibly connected with disulfide bonds. Synthesis and inclusion complexes. J. Org. Chem. 2009, 74, 1082-1092.
[46]
Liu, Y.; Chen, Y. Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers. Acc. Chem. Res. 2006, 39, 681-691.
[47]
Breslow, R.; Greenspoon, N.; Guo, T.; Zarzycki, R. Very strong binding of appropriate substrates by cyclodextrin dimers. J. Am. Chem. Soc. 1989, 111, 8296-8297.
[48]
Harada, A.; Furue, M.; Nozakura, S. I. Cooperative binding by cyclodextrin dimers. Polym. J. 1980, 12, 29-33.
[49]
Liu, Y.; You, C. C.; Zhang, H. Y.; Kang, S. Z.; Zhu, C. F.; Wang, C. Bis(molecular tube)s: Supramolecular assembly of complexes of organoselenium-bridged β-cyclodextrins with platinum(IV). Nano Lett. 2001, 1, 613-616.
[50]
Liu, Y.; Yang, Z. X.; Chen, Y.; Song, Y.; Shao, N. Construction of a long cyclodextrin-based bis(molecular tube) from bis(polypseudorotaxane) and its capture of C60. ACS Nano 2008, 2, 554-560.
[51]
Furukawa, Y.; Ishiwata, T.; Sugikawa, K.; Kokado, K.; Sada, K. Nano- and microsized cubic gel particles from cyclodextrin metal-organic frameworks. Angew. Chem., Int. Ed. 2012, 51, 10566-10569.
[52]
Tao, Y. X.; Gu, X. G.; Deng, L. H.; Qin, Y.; Xue, H. G.; Kong, Y. Chiral recognition of D-tryptophan by confining high-energy water molecules inside the cavity of copper-modified β-cyclodextrin. J. Phys. Chem. C 2015, 119, 8183-8190.
[53]
Shih, Y. H.; Kuo, Y. C.; Lirio, S.; Wang, K. Y.; Lin, C. H.; Huang, H. Y. A simple approach to enhance the water stability of a metal-organic framework. Chem.—Eur. J. 2017, 23, 42-46.
[54]
Hartlieb, K. J.; Holcroft, J. M.; Moghadam, P. Z.; Vermeulen, N. A.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y.; Snurr, R. Q.; Stoddart, J. F. Cd-MOF: A versatile separation medium. J. Am. Chem. Soc. 2016, 138, 2292-2301.
[55]
Wang, L.; Liang, X. Y.; Chang, Z. Y.; Ding, L. S.; Zhang, S.; Li, B. J. Effective formaldehyde capture by green cyclodextrin-based metal-organic framework. ACS Appl. Mater. Interfaces 2018, 10, 42-46.
[56]
Sha, J. Q.; Zhong, X. H.; Wu, L. H.; Liu, G. D.; Sheng, N. Nontoxic and renewable metal-organic framework based on α-cyclodextrin with efficient drug delivery. RSC Advances 2016, 6, 82977-82983.
[57]
Wu, Y. L.; Shi, R. F.; Wu, Y. L.; Holcroft, J. M.; Liu, Z. C.; Frasconi, M.; Wasielewski, M. R.; Li, H.; Stoddart, J. F. Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 2015, 137, 4111-4118.
[58]
Holcroft, J. M.; Hartlieb, K. J.; Moghadam, P. Z.; Bell, J. G.; Barin, G.; Ferris, D. P.; Bloch, E. D.; Algaradah, M. M.; Nassar, M. S.; Botros, Y. Y. et al. Carbohydrate-mediated purification of petrochemicals. J. Am. Chem. Soc. 2015, 137, 5706-5719.
[59]
Singh, V.; Guo, T.; Xu, H. T.; Wu, L.; Gu, J. K.; Wu, C. B.; Gref, R.; Zhang, J. W. Moisture resistant and biofriendly Cd-MOF nanoparticles obtained via cholesterol shielding. Chem. Commun. 2017, 53, 9246-9249.
[60]
Li, H. Q.; Hill, M. R.; Huang, R. H.; Doblin, C.; Lim, S.; Hill, A. J.; Babarao, R.; Falcaro, P. Facile stabilization of cyclodextrin metal-organic frameworks under aqueous conditions via the incorporation of C60 in their matrices. Chem. Commun. 2016, 52, 5973-5976.
[61]
Yamasaki, H.; Makihata, Y.; Fukunaga, K. Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J. Chem. Technol. Biotechnol. 2006, 81, 1271-1276.
[62]
Klemes, M. J.; Ling, Y. H.; Chiapasco, M.; Alsbaiee, A.; Helbling, D. E.; Dichtel, W. R. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. Chem. Sci. 2018, 9, 8883-8889.
[63]
García-Zubiri, I. X.; González-Gaitano, G.; Isasi, J. R. Sorption models in cyclodextrin polymers: Langmuir, Freundlich, and a dual-mode approach. J. Colloid Interface Sci. 2009, 337, 11-18.
[64]
Huang, Y. Q.; Wong, C. K. C.; Zheng, J. S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M. H. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ. Int. 2012, 42, 91-99.
[65]
Huey, R.; Morris, G. M.; Olson, A. J.; Goodsell, D. S. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem. 2007, 28, 1145-1152.
Nano Research
Pages 1933-1942
Cite this article:
He W, Ren X, Yan Z, et al. Porous β-cyclodextrin nanotubular assemblies enable high-efficiency removal of bisphenol micropollutants from aquatic systems. Nano Research, 2020, 13(7): 1933-1942. https://doi.org/10.1007/s12274-020-2758-0
Topics:
Part of a topical collection:

814

Views

21

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 15 December 2019
Revised: 14 February 2020
Accepted: 14 March 2020
Published: 30 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return