AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX

Sucheol Ju1,§Minseop Byun1,§Minjin Kim2,§Junho Jun1Daihong Huh1Dong Suk Kim2Yimhyun Jo2( )Heon Lee( )
Department of Materials Science and Engineering, Korea University, Anam-ro 145, Sungbuk-Gu, Seoul 136-701, Republic of Korea
KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), UNIST-Gil 50, Eonyang-eup, Ulju-gun, Ulsan 689-851, Republic of Korea

§ Sucheol Ju, Minseop Byun, and Minjin Kim contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The performance of solar cells is determined by three factors: the open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF). The VOC and FF are determined by the material bandgap and the series/shunt resistance, respectively. However, JSC is determined by the amount of incident light in addition to the bandgap of the material. In this study, a moth-eye pattern was formed on a glass surface via direct printing to increase the amount of incident light and thus increase JSC. The moth-eye pattern is a typical antireflection pattern that reduces the reflection by gradually increasing the refractive index. A flat perovskite solar cell (F-PSC) and a moth-eye patterned perovskite solar cell (M-PSC) had JSC values of 23.70 and 25.50 mA/cm2, respectively. The power-conversion efficiencies of the F-PSC and M-PSC were 19.81% and 21.77%, respectively.

Electronic Supplementary Material

Download File(s)
12274_2020_2763_MOESM1_ESM.pdf (2.7 MB)

References

[1]
Kuwano, Y.; Okamoto, S.; Tsuda, S. Semiconductor devices save the earth-solar cells. In Proceedings of 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA, 1992, pp 3-10.
[2]
Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519-522.
[3]
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967-970.
[4]
Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653-4658.
[5]
Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584-1589.
[6]
Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
[7]
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.
[8]
Kim, H. S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N. G.; Bisquert, J. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 2013, 4, 2242.
[9]
Ji, L.; Zhang, X. Z.; Zhang, T.; Wang, Y. F.; Wang, F.; Zhong, Z. Q.; Chen, Z. D.; Xiao, Z. W.; Chen, L.; Li, S. B. Band alignment of Pb-Sn mixed triple cation perovskites for inverted solar cells with negligible hysteresis. J. Mater. Chem. A 2019, 7, 9154-9162.
[10]
Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.
[11]
Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623-3630.
[12]
Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423-2429.
[13]
Mitzi, D. B. Solution-processed inorganic semiconductors. J. Mater. Chem. 2004, 14, 2355-2365.
[14]
Liu, D. T.; Zheng, H. L.; Ji, L.; Chen, H.; Wang, Y. F.; Zhang, P.; Wang, F.; Wu, J.; Chen, Z.; Li, S. B. Improved crystallinity of perovskite via molecularly tailored surface modification of SnO2. J. Power Sources 2019, 441, 227161.
[15]
Wang, F.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Zhang, P.; Chen, H.; Ji, L.; Chen, L.; Chen, Z. D.; Wu, J. et al. Steering the crystallization of perovskites for high-performance solar cells in ambient air. J. Mater. Chem. A 2019, 7, 12166-12175.
[16]
Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 2448-2463.
[17]
Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316-319.
[18]
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
[19]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[20]
Jiang, Q.; Chu, Z. M.; Wang, P. Y.; Yang, X. L.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852.
[21]
Min, H.; Kim, M.; Lee, S. U.; Kim, H.; Kim, G.; Choi, K.; Lee, J. H.; Seok, S. I. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 2019, 366, 749-753.
[22]
Kim, M. C.; Jang, S.; Choi, J.; Kang, S. M.; Choi, M. Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano-Micro Lett. 2019, 11, 53.
[23]
Hou, F. H.; Han, C.; Isabella, O.; Yan, L. L.; Shi, B.; Chen, J. F.; An, S. C.; Zhou, Z. X.; Huang, W.; Ren, H. Z. et al. Inverted pyramidally-textured PDMS antireflective foils for perovskite/silicon tandem solar cells with flat top cell. Nano Energy 2019, 56, 234-240.
[24]
Liu, R. T.; Lee, S. T.; Sun, B. Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007-6012.
[25]
Luo, Q.; Deng, X. S.; Zhang, C. X.; Yu, M. D.; Zhou, X.; Wang, Z. B.; Chen, X. H.; Huang, S. M. Enhancing photovoltaic performance of perovskite solar cells with silica nanosphere antireflection coatings. Solar Energy 2018, 169, 128-135.
[26]
Kim, M.; Kang, T. W.; Kim, S. H.; Jung, E. H.; Park, H. H.; Seo, J.; Lee, S. J. Antireflective, self-cleaning and protective film by continuous sputtering of a plasma polymer on inorganic multilayer for perovskite solar cells application. Solar Energy Mater. Solar Cells 2019, 191, 55-61.
[27]
Schneider, B. W.; Lal, N. N.; Baker-Finch, S.; White, T. P. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt. Express 2014, 22, A1422-A1430.
[28]
Kang, S. M.; Jang, S.; Lee, J. K.; Yoon, J.; Yoo, D. E.; Lee, J. W.; Choi, M.; Park, N. G. Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 2016, 12, 2443-2449.
[29]
Bernhard, C. G.; Gemne, G.; Sallström, J. Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. J. Comp. Physiol. A 1970, 67, 1-25.
[30]
Choi, H. J.; Choo, S.; Shin, J. H.; Kim, K. I.; Lee, H. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography. J. Phys. Chem. C 2013, 117, 24354-24359.
[31]
Clapham, P. B.; Hutley, M. C. Reduction of lens reflexion by the “moth eye” principle. Nature 1973, 244, 281-282.
[32]
Hong, E. J.; Byeon, K. J.; Park, H.; Hwang, J.; Lee, H.; Choi, K.; Jung, G. Y. Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction. Mater. Sci. Eng. B 2009, 163, 170-173.
[33]
Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086-4089.
[34]
Ghosh, D. S.; Chen, T. L.; Pruneri, V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 2010, 96, 041109.
[35]
Hwang, I.; Choi, D.; Lee, S.; hoon Seo, J. H.; Kim, K. H.; Yoon, I.; Seo, K. Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces 2017, 9, 21276-21282.
[36]
Dong, J.; Zhao, Y. H.; Shi, J. J.; Wei, H. Y.; Xiao, J. Y.; Xu, X.; Luo, J. H.; Xu, J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 2014, 50, 13381-13384.
[37]
Zhou, Y. Y.; Kwun, J.; Garces, H. F.; Pang, S. P.; Padture, N. P. Observation of phase-retention behavior of the HC(NH2)2PbI3 black perovskite polymorph upon mesoporous TiO2 scaffolds. Chem. Commun. 2016, 52, 7273-7275.
[38]
Zhang, X. Q.; Wu, G.; Fu, W. F.; Qin, M. C.; Yang, W. T.; Yan, J. L.; Zhang, Z. Q.; Lu, X. H.; Chen, H. Z. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 2018, 8, 1702498.
Nano Research
Pages 1156-1161
Cite this article:
Ju S, Byun M, Kim M, et al. Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Research, 2020, 13(4): 1156-1161. https://doi.org/10.1007/s12274-020-2763-3
Topics:

828

Views

19

Crossref

N/A

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 18 November 2019
Revised: 11 February 2020
Accepted: 21 March 2020
Published: 07 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return