AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance

Rui DingYide LiuZhiyan RuiJia Li( )Jianguo Liu( )Zhigang Zou
Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
Show Author Information

Graphical Abstract

Abstract

Single-atom catalysts (SACs) have become one of the most considered research directions today, owing to their maximum atom utilization and simple structures, to investigate structure-activity relationships. In the field of non-precious-metal electrocatalysts, atomically dispersed Fe-N4 active sites have been proven to possess the best oxygen reduction activity. Yet the majority of preparation methods remains complex and costly with unsatisfying controllability. Herein, we have designed a surface-grafting strategy to directly synthesize an atomically dispersed Fe-N4/C electrocatalyst applied to the oxygen reduction reaction (ORR). Through an esterification process in organic solution, metal-containing precursors were anchored on the surface of carbon substrates. The covalent bonding effect could suppress the formation of aggregated particles during heat treatment. Melamine was further introduced as both a cost-effective nitrogen resource and blocking agent retarding the migration of metal atoms. The optimized catalyst has proven to have abundant atomically dispersed Fe-N4 active sites with enhanced ORR catalytic performance in acid condition. This method has provided new feasible ideas for the synthesis of SACs.

Electronic Supplementary Material

Download File(s)
12274_2020_2768_MOESM1_ESM.pdf (5.4 MB)

References

[1]
Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212-1213.
[2]
Li, J.; Song, Y. J.; Zhang, G. X.; Liu, H. Y.; Wang, Y. R.; Sun, S. H.; Guo, X. W. Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium. Adv. Funct. Mater. 2017, 27, 1604356.
[3]
Lefevre, M.; Dodelet, J. P. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: Determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim. Acta 2003, 48, 2749-2760.
[4]
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443-447.
[5]
Su, X. G.; Liu, J. G.; Yao, Y. F.; You, Y.; Zhang, X.; Zhao, C. Y.; Wan, H.; Zhou, Y.; Zou, Z. G. Solid phase polymerization of phenylenediamine toward a self-supported FeNx/C catalyst with high oxygen reduction activity. Chem. Commun. 2015, 51, 16707-16709.
[6]
Li, Y. R.; Guo, C. Z.; Li, J. Q.; Liao, W. L.; Li, Z. B.; Zhang, J.; Chen, C. G. Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon 2017, 119, 201-210.
[7]
Yang, L. L.; Su, Y. M.; Li, W. M.; Kan, X. W. Fe/N/C electrocatalysts for oxygen reduction reaction in PEM fuel cells using nitrogen-rich ligand as precursor. J. Phys. Chem. C 2015, 119, 11311-11319.
[8]
Li, Y. Q.; Huang, H. Y.; Chen, S. R.; Yu, X.; Wang, C.; Ma, T. L. 2D nanoplate assembled nitrogen doped hollow carbon sphere decorated with Fe3O4 as an efficient electrocatalyst for oxygen reduction reaction and Zn-air batteries. Nano Res. 2019, 12, 2774-2780.
[9]
Shen, M. X.; Zheng, L. R.; He, W. H.; Ruan, C. P.; Jiang, C. H.; Ai, K. L.; Lu, L. H. High-performance oxygen reduction electrocatalysts derived from uniform cobalt-adenine assemblies. Nano Energy 2015, 17, 120-130.
[10]
Ye, Y. F.; Cai, F.; Li, H. B.; Wu, H. H.; Wang, G. X.; Li, Y. H.; Miao, S.; Xie, S. H.; Si, R.; Wang, J. et al. Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy 2017, 38, 281-289.
[11]
Xie, Y.; Tang, C. Z.; Hao, Z. Q.; Lv, Y.; Yang, R. X.; Wei, X. M.; Deng, W. Q.; Wang, A. J.; Yi, B. L.; Song, Y. J. Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discuss. 2014, 176, 393-408.
[12]
Byon, H. R.; Suntivich, J.; Crumlin, E. J.; Shao-Horn, Y. Fe-N-modified multi-walled carbon nanotubes for oxygen reduction reaction in acid. Phys. Chem. Chem. Phys. 2011, 13, 21437-21445.
[13]
Qian, Y. D.; Liu, Z.; Zhang, H.; Wu, P.; Cai, C. X. Active site structures in nitrogen-doped carbon-supported cobalt catalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 32875-32886.
[14]
Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479-484.
[15]
Li, F.; Han, G. F.; Noh, H. J.; Kim, S. J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. B. Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ. Sci. 2018, 11, 2263-2269.
[16]
Luo, E. G.; Zhang, H.; Wang, X.; Gao, L. Q.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Jiang, Z.; Liu, C. P. et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed. 2019, 58, 12469-12475.
[17]
Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640-9645.
[18]
Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260-6269.
[19]
Li, J.; Chen, S. G.; Yang, N.; Deng, M. M.; Ibraheem, S.; Deng, J. H.; Li, J.; Li, L.; Wei, Z. D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem., Int. Ed. 2019, 58, 7035-7039.
[20]
Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 131, 19147-19156.
[21]
He, Y. H.; Hwang, S.; Cullen, D. A.; Uddin, M. A.; Langhorst, L.; Li, B. Y.; Karakalos, S.; Kropf, A. J.; Wegener, E. C.; Sokolowski, J. et al. Highly active atomically dispersed Con4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250-260.
[22]
Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935-945.
[23]
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of co oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[24]
Tang, N. F.; Cong, Y.; Shang, Q. H.; Wu, C. T.; Xu, G. L.; Wang, X. D. Coordinatively unsaturated Al3+ sites anchored subnanometric ruthenium catalyst for hydrogenation of aromatics. ACS Catal. 2017, 7, 5987-5991.
[25]
Wang, X. X.; Cullen, D. A.; Pan, Y. T.; Hwang, S.; Wang, M.Y.; Feng, Z. X.; Wang, J. Y.; Engelhard, M. H.; Zhang, H. G.; He, Y. H. et al. Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 2018, 30, 1706758.
[26]
Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269-17272.
[27]
Wei, H. H.; Huang, K.; Wang, D.; Zhang, R. Y.; Ge, B. H.; Ma, J. Y.; Wen, B.; Zhang, S.; Li, Q. Y.; Lei, M. et al. Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth. Nat. Commun. 2017, 8, 1490.
[28]
He, C.; Wu, Z. Y.; Zhao, L.; Ming, M.; Zhang, Y.; Yi, Y. P.; Hu, J. S. Identification of Fen4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 2019, 9, 7311-7317.
[29]
Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281-17284.
[30]
Zhang, Z. P.; Gao, X. J.; Dou, M. L.; Ji, J.; Wang, F. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 2017, 13, 1604290.
[31]
Liu, X.; Liu, H.; Chen, C.; Zou, L. L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z. Q.; Yang, H. Fe2N nanoparticles boosting FeNx moieties for highly efficient oxygen reduction reaction in Fe-N-C porous catalyst. Nano Res. 2019, 12, 1651-1657.
[32]
Bao, S. X.; Duan, J. H.; Zhang, Y. M. Characteristics of nitric acid-modified carbon nanotubes and desalination performance in capacitive deionization. Chem. Eng. Technol. 2018, 41, 1793-1799.
[33]
Simons, W. W. The Sadtler Handbook of Infrared Spectra; Sadtler Research Laboratories: Philadelphia, 1978.
[34]
Yang, X. Y.; Wang, Z. L.; Pan, M. C. Preparation and characterization of self-dispersal nanometer carbon black pigment. Adv. Matter. Res. 2011, 189-193, 3836-3839.
[35]
Lakshminarayanan, P. V.; Toghiani, H.; Pittman, C. U.Jr. Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 2004, 42, 2433-2442.
[36]
Bradley, R. H.; Daley, R.; Le Goff, F. Polar and dispersion interactions at carbon surfaces: Further development of the XPS-based model. Carbon 2002, 40, 1173-1179.
[37]
Liu, Y. X.; Du, Z. J.; Li, Y.; Zhang, C.; Li, H. Q. Covalent functionalization of multiwalled carbon nanotubes with poly(acrylic acid). Chin. J. Chem. 2006, 24, 563-568.
[38]
Roghani-Mamaqani, H.; Haddadi-Asl, V.; Ghaderi-Ghahfarrokhi, M.; Sobhkhiz, Z. Reverse atom transfer radical polymerization of methyl methacrylate in the presence of azo-functionalized carbon nanotubes: A grafting from approach. Colloid. Polym. Sci. 2014, 292, 2971-2981.
[39]
Pisarello, M. L.; Dalla Costa, B.; Mendow, G.; Querini, C. A. Esterification with ethanol to produce biodiesel from high acidity raw materials. Fuel Process. Technol. 2010, 91, 1005-1014.
[40]
Tom, R. T.; Pradeep, T. Interaction of azide ion with Hemin and cytochrome c immobilized on au and Ag nanoparticles. Langmuir 2005, 21, 11896-11902.
[41]
Ashima, H.; Chun, W. J.; Asakura, K. Room-temperature-adsorption behavior of acetic anhydride on a TiO2(110) surface. Surf. Sci. 2007, 601, 1822-1830.
[42]
Rocco, M. L. M.; Haeming, M.; Batchelor, D. R.; Fink, R.; Schöll, A.; Umbach, E. Electronic relaxation effects in condensed polyacenes: A high-resolution photoemission study. J. Chem. Phys. 2008, 129, 074702.
[43]
Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J. Am. Chem. Soc. 2003, 125, 10288-10300.
[44]
Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397-401.
[45]
Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.
[46]
Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158-2163.
[47]
Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H. et al. Atomically dispersed Fe-Nx/C electrocatalyst boosts oxygen catalysis via a new metal-organic polymer supramolecule strategy. Adv. Energy Mater. 2018, 8, 1801226.
[48]
Yi, J. D.; Xu, R.; Wu, Q.; Zhang, T.; Zang, K. T.; Luo, J.; Liang, Y. L.; Huang, Y. B.; Cao, R. Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3, 883-889.
[49]
Zhou, J. G.; Duchesne, P. N.; Hu, Y. F.; Wang, J.; Zhang, P.; Li, Y. G.; Regier, T.; Dai, H. J. Fe-N bonding in a carbon nanotube-graphene complex for oxygen reduction: An XAS study. Phys. Chem. Chem. Phys. 2014, 16, 15787-15791.
[50]
Wu, G.; Johnston, C. M.; Mack, N. H.; Artyushkova, K.; Ferrandon, M.; Nelson, M.; Lezama-Pacheco, J. S.; Conradson, S. D.; More, K. L.; Myers, D. J. et al. Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metal cathode catalysts for oxygenreduction in fuelcells. J. Mater. Chem. 2011, 21, 11392-11405.
[51]
Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. J. Phys. Chem. Lett. 2010, 1, 2622-2627.
[52]
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.
[53]
Liu, G.; Li, X. G.; Ganesan, P.; Popov, B. N. Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for PEM fuel cells. Electrochim. Acta 2010, 55, 2853-2858.
[54]
Chen, Y. F.; Li, Z. J.; Zhu, Y. B.; Sun, D. M.; Liu, X. E.; Xu, L.; Tang, Y. W. Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
[55]
Jaouen, F.; Lefèvre, M.; Dodelet, J. P.; Cai, M. Heat-treated Fe/N/C catalysts for O2 electroreduction: Are active sites hosted in micropores? J. Phys. Chem. B 2006, 110, 5553-5558.
[56]
Xiao, M. L.; Zhu, J. B.; Ma, L.; Jin, Z.; Ge, J. J.; Deng, X.; Hou, Y.; He, Q. G.; Li, J. K.; Jia, Q. Y. et al. Microporous framework induced synthesis of single-atom dispersed Fe-N-C acidic ORR catalyst and its in situ reduced Fe-N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 2018, 8, 2824-2832.
[57]
Garsany, Y.; Singer, I. L.; Swider-Lyons, K. E. Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J. Electroanal. Chem. 2011, 662, 396-406.
[58]
van der Vliet, D.; Strmcnik, D. S.; Wang, C.; Stamenkovic, V. R.; Markovic, N. M.; Koper, M. T. M. On the importance of correcting for the uncompensated Ohmic resistance in model experiments of the oxygen reduction reaction. J. Electroanal. Chem. 2010, 647, 29-34.
[59]
Masa, J.; Batchelor-McAuley, C.; Schuhmann, W.; Compton, R. G. Koutecky-levich analysis applied to nanoparticle modified rotating disk electrodes: Electrocatalysis or misinterpretation. Nano Res .2013, 7, 71-78.
[60]
Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 2011, 476, 308-311.
[61]
Liao, L. W.; Zheng, Y. L.; Wei, J.; Chen, Y. X. O2 surface concentration change and its implication on oxygen reduction mechanism and kinetics at platinum in acidic media. Electrochem. Commun. 2015, 58, 73-75.
[62]
Liang, Z. X.; Song, H. Y.; Liao, S. J. Hemin: A highly effective electrocatalyst mediating the oxygen reduction reaction. J. Phys. Chem. C 2011, 115, 2604-2610.
[63]
Wang, Z. Z.; Lv, P.; Hu, Y.; Hu, K. L. Thermal degradation study of intumescent flame retardants by TG and FTIR: Melamine phosphate and its mixture with pentaerythritol. J. Anal. Appl. Pyrol. 2009, 86, 207-214.
[64]
Jiang, R. Z.; Tran, D. T.; McClure, J. P.; Chu, D. Increasing the electrochemically available active sites for heat-treated hemin catalysts supported on carbon black. Electrochim. Acta 2012, 75, 185-190.
[65]
Meng, H.; Larouche, N.; Lefevre, M.; Jaouen, F.; Stansfield, B.; Dodelet, J. P. Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochim. Acta 2010, 55, 6450-6461.
[66]
Kong, A.; Zhang, Y.; Chen, Z.; Chen, A.; Li, C.; Wang, H.; Shan, Y. One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction. Carbon 2017, 116, 606-614.
[67]
Wu, G.; Chung, H. T.; Nelson, M.; Artyushkova, K.; More, K. L.; Johnston, C. M.; Zelenay, P. Graphene-enriched Co9S8-N-C non-precious metal catalyst for oxygen reduction in alkaline media. ECS Trans. 2011, 41, 1709-1717.
[68]
Said, E. Z.; Al-Sammerrai, D. Thermal decomposition of haemin chloride and related derivatives. J. Anal. Appl. Pyrol. 1985, 9, 35-41.
[69]
Smith, C. M. M.; Harnly, J. M. Characterization of a modified two-step furnace for atomic absorption spectrometry for selective volatilization of iron species in hemin. J. Anal. At. Spectrom. 1996, 11, 1055-1061.
Nano Research
Pages 1519-1526
Cite this article:
Ding R, Liu Y, Rui Z, et al. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Research, 2020, 13(6): 1519-1526. https://doi.org/10.1007/s12274-020-2768-y
Topics:

832

Views

65

Crossref

N/A

Web of Science

63

Scopus

17

CSCD

Altmetrics

Received: 27 January 2020
Revised: 11 March 2020
Accepted: 21 March 2020
Published: 14 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return