AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantum anomalous Hall effect in two-dimensional Cu-dicyanobenzene coloring-triangle lattice

Yixuan Gao1,2Yu-Yang Zhang1,2,3Jia-Tao Sun4Lizhi Zhang1,2( )Shengbai Zhang5Shixuan Du1,2,3,6( )
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China
School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

Abstract

Magnetic two-dimensional (2D) topological insulators with spontaneous magnetization have been predicted to host quantum anomalous Hall effects (QAHEs). For organic topological insulators, the QAHE only exists in honeycomb or Kagome organometallic lattices based on theoretical calculations. Recently, coloring-triangle (CT) lattice has been found to be mathematically equivalent to a Kagome lattice, suggesting a potential 2D lattice to realize QAHE. Here, based on first-principles calculations, we predict an organometallic CT lattice, Cu-dicyanobenzene (DCB), to be a stable QAH insulator. It exhibits ferromagnetic (FM) properties as a result of the charge transfer from metal atoms to DCB molecules. Moreover, based on the Ising model, the Curie temperature of the FM ordering is calculated to be around 100 K. Both the Chern numbers and the chiral edge states of the semi-infinite Cu-DCB edge structure, which occur inside the spin-orbit coupling band gap, confirm its nontrivial topological properties. These make the Cu-DCB CT lattice an ideal candidate to enrich the family of QAH insulators.

Electronic Supplementary Material

Download File(s)
12274_2020_2772_MOESM1_ESM.pdf (1.5 MB)

References

[1]
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.
[2]
Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057-1110.
[3]
Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.
[4]
Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757-1761.
[5]
Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.
[6]
Zhou, M.; Ming, W. M.; Liu, Z.; Wang, Z. F.; Li, P.; Liu, F. Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface. Proc. Natl. Acad. Sci. USA 2014, 111, 14378-14381.
[7]
Gao, L.; Sun, J. T.; Sethi, G.; Zhang, Y. Y.; Du, S. X.; Liu, F. Orbital design of topological insulators from two-dimensional semiconductors. Nanoscale 2019, 11, 22743-22747.
[8]
Liu, J. W.; Hsieh, T. H.; Wei, P.; Duan, W. H.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2014, 13, 178-183.
[9]
Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 1988, 61, 2015-2018.
[10]
Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous Hall effect in magnetic topological insulators. Science 2010, 329, 61-64.
[11]
Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013, 340, 167-170.
[12]
Checkelsky, J. G.; Ye, J. T.; Onose, Y.; Iwasa, Y.; Tokura, Y. Dirac-fermion-mediated ferromagnetism in a topological insulator. Nat. Phys. 2012, 8, 729-733.
[13]
Wang, Z. F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471.
[14]
Yamada, M. G.; Soejima, T.; Tsuji, N.; Hirai, D.; Dincă, M.; Aoki, H. First-principles design of a half-filled flat band of the Kagome lattice in two-dimensional metal-organic frameworks. Phys. Rev. B 2016, 94, 081102.
[15]
Sun, H.; Li, B.; Zhao, J. Half-metallicity in 2D organometallic honeycomb frameworks. J. Phys. Condens. Matter 2016, 28, 425301.
[16]
Chen, Y.; Sun, Q. Magnetic two-dimensional organic topological insulator: Au-1,3,5-triethynylbenzene framework. J. Chem. Phys. 2017, 147, 104704.
[17]
Zhang, X. M.; Zhao, M. W. Robust half-metallicity and topological aspects in two-dimensional Cu-TPyB. Sci. Rep. 2015, 5, 14098.
[18]
Liu, Z.; Wang, Z. F.; Mei, J. W.; Wu, Y. S.; Liu, F. Flat Chern band in a two-dimensional organometallic framework. Phys. Rev. Lett. 2013, 110, 106804.
[19]
Zhang, L. Z.; Wang, Z. F.; Huang, B.; Cui, B.; Wang, Z. M.; Du, S. X.; Gao, H. J.; Liu, F. Intrinsic two-dimensional organic topological insulators in metal-dicyanoanthracene lattices. Nano Lett. 2016, 16, 2072-2075.
[20]
Sun, H.; Tan, S. J.; Feng, M.; Zhao, J.; Petek, H. Deconstruction of the electronic properties of a topological insulator with a two-dimensional noble metal-organic honeycomb-Kagome band structure. J. Phys. Chem. C 2018, 122, 18659-18668.
[21]
Gao, Y. X.; Zhang, L. Z.; Zhang, Y. Y.; Du, S. X. Research progress of two-dimensional organic topological insulators. Acta Phys. Sin. 2018, 67, 238101.
[22]
Wang, Y. P.; Ji, W. X.; Zhang, C. W.; Li, P.; Wang, P. J.; Kong, B.; Li, S. S.; Yan, S. S.; Liang, K. Discovery of intrinsic quantum anomalous Hall effect in organic Mn-DCA lattice. Appl. Phys. Lett. 2017, 110, 233107.
[23]
Zhang, Y.; Wei, Z.; Zhang, M. G.; Gu, X.; Huang, L. Giant magnetic anisotropy of a two-dimensional metal-dicyanoanthracene framework. Nanoscale 2018, 10, 17335-17340.
[24]
Wang, Z. F.; Liu, Z.; Liu, F. Quantum anomalous Hall effect in 2D organic topological insulators. Phys. Rev. Lett. 2013, 110, 196801.
[25]
Zhang, S. H.; Kang, M.; Huang, H. Q.; Jiang, W.; Ni, X. J.; Kang, L.; Zhang, S. P.; Xu, H. X.; Liu, Z. et al. Kagome bands disguised in a coloring-triangle lattice. Phys. Rev. B 2019, 99, 100404.
[26]
Zhang, Y. Y.; Du, S. X.; Gao, H. J. The construction and structure-property manipulation of “small-molecule machines”. Chin. Sci. Bull. 2018, 63, 1255-1264.
[27]
Cai, L. L.; Sun, Q.; Bao, M. L.; Ma, H. H.; Yuan, C. X.; Xu, W. Competition between hydrogen bonds and coordination bonds steered by the surface molecular coverage. ACS Nano 2017, 11, 3727-3732.
[28]
Repp, J.; Meyer, G.; Paavilainen, S.; Olsson, F. E.; Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 2006, 312, 1196-1199.
[29]
Kumar, A.; Banerjee, K.; Dvorak, M.; Schulz, F.; Harju, A.; Rinke, P.; Liljeroth, P. Charge-transfer-driven nonplanar adsorption of F4TCNQ molecules on epitaxial graphene. ACS Nano 2017, 11, 4960-4968.
[30]
Lach, S.; Altenhof, A.; Tarafder, K.; Schmitt, F.; Ali, E.; Vogel, M.; Sauther, J.; Oppeneer, P. M.; Ziegler, C. Metal-organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 2012, 22, 989-997.
[31]
Lee, K.; Howe, J. D.; Lin, L. C.; Smit, B.; Neaton, J. B. Small-molecule adsorption in open-site metal-organic frameworks: A systematic density functional theory study for rational design. Chem. Mater. 2015, 27, 668-678.
[32]
Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685-699.
[33]
López Sancho, M. P.; López Sancho, J. M.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 1985, 15, 851-858.
[34]
Neupert, T.; Santos, L.; Chamon, C.; Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 2011, 106, 236804.
[35]
Tang, E.; Mei, J. W.; Wen, X. G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 2011, 106, 236802.
[36]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[37]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[38]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[39]
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505-1509.
[40]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Nano Research
Pages 1571-1575
Cite this article:
Gao Y, Zhang Y-Y, Sun J-T, et al. Quantum anomalous Hall effect in two-dimensional Cu-dicyanobenzene coloring-triangle lattice. Nano Research, 2020, 13(6): 1571-1575. https://doi.org/10.1007/s12274-020-2772-2
Topics:

1073

Views

24

Crossref

N/A

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 14 February 2020
Revised: 13 March 2020
Accepted: 22 March 2020
Published: 14 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return