AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy

Seyyedesadaf Pournia1Samuel Linser1Giriraj Jnawali1Howard E. Jackson1Leigh M. Smith1( )Amira Ameruddin2Philippe Caroff2Jennifer Wong-Leung2Hark Hoe Tan2Chennupati Jagadish2Hannah J. Joyce3
Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011, USA
Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
Show Author Information

Graphical Abstract

Abstract

We use polarized photocurrent spectroscopy in a nanowire device to investigate the band structure of hexagonal Wurtzite InAs. Signatures of optical transitions between four valence bands and two conduction bands are observed which are consistent with the symmetries expected from group theory. The ground state transition energy identified from photocurrent spectra is seen to be consistent with photoluminescence emitted from a cluster of nanowires from the same growth substrate. From the energies of the observed bands we determine the spin orbit and crystal field energies in Wurtzite InAs. This information is vital to the development of crystal phase engineering of this important III-V semiconductor.

Electronic Supplementary Material

Download File(s)
12274_2020_2774_MOESM1_ESM.pdf (1.2 MB)

References

[1]
Hambourger, M.; Moore, G. F.; Kramer, D. M.; Gust, D.; Moore, A. L.; Moore, T. A. Biology and technology for photochemical fuel production. Chem. Soc. Rev. 2009, 38, 25-35.
[2]
Garnett, E. C.; Brongersma, M. L.; Cui, Y.; McGehee, M. D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269-295.
[3]
Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of majorana fermions. Nat. Phys. 2012, 8, 887-895.
[4]
Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H. et al. Polarization and temperature dependence of photoluminescence from zincblende and Wurtzite InP nanowires. Appl. Phys. Lett. 2007, 91, 263104.
[5]
Pemasiri, K.; Jackson, H. E.; Smith, L. M.; Wong, B. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Quantum confinement of excitons in Wurtzite InP nanowires. J. Appl. Phys. 2015, 117, 194306.
[6]
Perera, S.; Shi, T.; Fickenscher, M. A.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Illuminating the second conduction band and spin-orbit energy in single Wurtzite InP nanowires. Nano Lett. 2013, 13, 5367-5372.
[7]
Wallentin, J.; Mergenthaler, K.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K.; Pistol, M. E.; Borgström, M. T. Probing the Wurtzite conduction band structure using state filling in highly doped InP nanowires. Nano Lett. 2011, 11, 2286-2290.
[8]
Signorello, G.; Lörtscher, E.; Khomyakov, P. A.; Karg, S.; Dheeraj, D. L.; Gotsmann, B.; Weman, H.; Riel, H.; Signorello, G.; Lo, E. Inducing a direct-to-pseudodirect bandgap transition in Wurtzite GaAs nanowires with uniaxial stress. Nat. Comm. 2014, 5, 3655.
[9]
Ahtapodov, L.; Todorovic, J.; Olk, P.; Mjåland, T.; Slåttnes, P.; Dheeraj, D. L.; Van Helvoort, A. T. J.; Fimland, B. O.; Weman, H. A story told by a single nanowire: Optical properties of Wurtzite GaAs. Nano Lett. 2012, 12, 6090-6095.
[10]
Raya-Moreno, M.; Rurali, R.; Cartoixà, X. Thermal conductivity for III-V and II-VI semiconductor Wurtzite and zinc-blende polytypes: The role of anharmonicity and phase space. Phys. Rev. Mater. 2019, 3, 084607.
[11]
Wu, S. Y.; Peng, K.; Battiato, S.; Zannier, V.; Bertoni, A.; Goldoni, G.; Xie, X.; Yang, J. N.; Xiao, S.; Qian, C. J. et al. Anisotropies of the g-factor tensor and diamagnetic coefficient in crystal-phase quantum dots in InP nanowires. Nano Res. 2019, 12, 2842-2848.
[12]
Faria Junior, P. E.; Tedeschi, D.; De Luca, M.; Scharf, B.; Polimeni, A.; Fabian, J. Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel Wurtzite materials. Phys. Rev. B 2019, 99, 195205.
[13]
Tedeschi, D.; De Luca, M.; Faria Junior, P. E.; Granados Del Águila, A.; Gao, Q.; Tan, H. H.; Scharf, B.; Christianen, P. C. M.; Jagadish, C.; Fabian, J. et al. Unusual spin properties of InP Wurtzite nanowires revealed by Zeeman splitting spectroscopy. Phys. Rev. B 2019, 99, 161204(R).
[14]
Yuan, X. M.; Li, L.; Li, Z. Y.; Wang, F.; Wang, N. Y.; Fu, L.; He, J.; Tan, H. H.; Jagadish, C. Unexpected benefits of stacking faults on the electronic structure and optical emission in Wurtzite GaAs/GaInP core/shell nanowires. Nanoscale 2019, 11, 9207-9215.
[15]
Zhou, C.; Zhang, X. T.; Zheng, K.; Chen, P. P.; Matsumura, S.; Lu, W.; Zou, J. Epitaxial GaAs/AlGaAs core-multishell nanowires with enhanced photoluminescence lifetime. Nanoscale 2019, 11, 6859-6865.
[16]
Spies, M.; Monroy, E. Nanowire photodetectors based on Wurtzite semiconductor heterostructures. Semicond. Sci. Technol. 2019, 34, 053002.
[17]
Battiato, S.; Wu, S. Y.; Zannier, V.; Bertoni, A.; Goldoni, G.; Li, A.; Xiao, S.; Han, X. D.; Beltram, F.; Sorba, L. et al. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Nanotechnology 2019, 30, 194004.
[18]
Göransson, D. J. O.; Borgström, M. T.; Huang, Y. Q.; Messing, M. E.; Hessman, D.; Buyanova, I. A.; Chen, W. M.; Xu, H. Q. Measurements of strain and bandgap of coherently epitaxially grown Wurtzite InAsP-InP core-shell nanowires. Nano Lett. 2019, 19, 2674-2681.
[19]
Ren, Y. Z.; Leubner, P.; Verheijen, M. A.; Haverkort, J. E. M.; Bakkers, E. P. A. M. Hexagonal silicon grown from higher order silanes. Nanotechnology 2019, 30, 295602.
[20]
Cartoixà, X.; Palummo, M.; Hauge, H. I. T.; Bakkers, E. P. A. M.; Rurali, R. Optical emission in hexagonal SiGe nanowires. Nano Lett. 2017, 17, 4753-4758.
[21]
Dixit, S.; Shukla, A. K. Optical properties of lonsdaleite silicon nanowires: A promising material for optoelectronic applications. J. Appl. Phys. 2018, 123, 224301.
[22]
Rota, M. B.; Ameruddin, A. S.; Fonseka, H. A.; Gao, Q.; Mura, F.; Polimeni, A.; Miriametro, A.; Tan, H. H.; Jagadish, C.; Capizzi, M. Bandgap energy of Wurtzite InAs nanowires. Nano Lett. 2016, 16, 5197-5203.
[23]
Bao, J. M.; Bell, D. C.; Capasso, F.; Erdman, N.; Wei, D. G.; Fröberg, L.; Mårtensson, T.; Samuelson, L. Nanowire-induced Wurtzite inas thin film on zinc-blende inas substrate. Adv. Mater. 2009, 21, 3654-3658.
[24]
Möller, M.; De Lima, Jr. M. M.; Cantarero, A.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F. Optical emission of InAs nanowires. Nanotechnology 2012, 23, 375704.
[25]
Trägårdh, J.; Persson, A. I.; Wagner, J. B.; Hessman, D.; Samuelson, L. Measurements of the band gap of Wurtzite InAs1-xPx nanowires using photocurrent spectroscopy. J. Appl. Phys. 2007, 101, 123701.
[26]
De, A.; Pryor, C. E. Predicted band structures of III-V semiconductors in the Wurtzite phase. Phys. Rev. B 2010, 81, 155210.
[27]
Faria Junior, P. E.; Campos, T.; Bastos, C. M. O.; Gmitra, M.; Fabian, J.; Sipahi, G. M. Realistic multiband k·p approach from ab initio and spin-orbit coupling effects of InAs and InP in Wurtzite phase. Phys. Rev. B 2016, 93, 235204.
[28]
Gmitra, M.; Fabian, J. First-principles studies of orbital and spin-orbit properties of GaAs, GaSb, InAs, and InSb zinc-blende and Wurtzite semiconductors. Phys. Rev. B 2016, 94, 165202.
[29]
Zanolli, Z.; Fuchs, F.; Furthmüller, J.; Von Barth, U.; Bechstedt, F. Model GW band structure of InAs and GaAs in the Wurtzite phase. Phys. Rev. B 2007, 75, 245121.
[30]
Bechstedt, F.; Belabbes, A. Structure, energetics, and electronic states of III-V compound polytypes. J. Phys. Condens. Matter 2013, 25, 273201.
[31]
Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Hoe Tan, H.; Jagadish, C. Phase perfection in zinc blende and Wurtzite III-V nanowires using basic growth parameters. Nano Lett. 2010, 10, 908-915.
[32]
Alexander-Webber, J. A.; Groschner, C. K.; Sagade, A. A.; Tainter, G.; Gonzalez-Zalba, M. F.; Di Pietro, R.; Wong-Leung, J.; Tan, H. H.; Jagadish, C.; Hofmann, S.; et al. Engineering the photoresponse of InAs nanowires. ACS Appl. Mater. Interfaces 2017, 9, 43993-44000.
[33]
Ullah, A. R.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Micolich, A. P. The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology 2017, 28, 454001.
[34]
Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles; Springer: Boston, MA, USA, 1999.
[35]
Pavesi, L.; Piazza, F.; Rudra, A.; Carlin, J. F.; Ilegems, M. Temperature dependence of the InP band gap from a photoluminescence study. Phys. Rev. B 1991, 44, 9052-9055.
[36]
Geng, P. J.; Li, W. G.; Zhang, X. H.; Zhang, X. Y.; Deng, Y.; Kou, H. B. A novel theoretical model for the temperature dependence of band gap energy in semiconductors. J. Phys. D: Appl. Phys. 2017, 50, 40LT02.
[37]
O’Donnell, K. P.; Chen, X. Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 1991, 58, 2924-2926.
[38]
Kumar, P.; Wade, A.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Choi, Y. J.; Park, J. G. Photocurrent spectroscopy of single CdS nanosheets: Valence band structure and two photon absorption. Appl. Phys. Lett. 2011, 98, 143102.
[39]
Chuang, S. L.; Chang, C. S. k⋅p method for strained Wurtzite semiconductors. Phys. Rev. B 1996, 54, 2491-2504.
[40]
Ehrenreich, H.; Seitz, F.; Turnbull, D. Solid State Physics; Academic Press: New York, USA, 1981.
[41]
Madelung, O. Semiconductors: Data Handbook, 3rd ed.; Springer: Berlin, Heidelberg, 2004.
[42]
Sun, M. H.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Ning, C. Z. Removal of surface states and recovery of band-edge emission in InAs nanowires through surface passivation. Nano Lett. 2012, 12, 3378-3384.
[43]
Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in semiconducting and metallic nanowires. Phys. Rev. B 2005, 72, 115308.
[44]
Ruda, H. E.; Shik, A. Polarization-sensitive optical phenomena in thick semiconducting nanowires. J. Appl. Phys. 2006, 100, 024314.
[45]
Jensen, B. Quantum theory of the complex dielectric constant of free carriers in polar semiconductors. IEEE J. Quantum Electron. 1982, 18, 1361-1370.
[46]
De, A.; Pryor, C. E. Optical dielectric functions of Wurtzite III-V semiconductors. Phys. Rev. B 2012, 85, 125201.
[47]
De Luca, M.; Zilli, A.; Fonseka, H. A.; Mokkapati, S.; Miriametro, A.; Tan, H. H.; Smith, L. M.; Jagadish, C.; Capizzi, M.; Polimeni, A. Polarized light absorption in Wurtzite InP nanowire ensembles. Nano Lett. 2015, 15, 998-1005.
[48]
Kim, D. C.; Dheeraj, D. L.; Fimland, B. O.; Weman, H. Polarization dependent photocurrent spectroscopy of single Wurtzite GaAs/AlGaAs core-shell nanowires. Appl. Phys. Lett. 2013, 102, 142107.
Nano Research
Pages 1586-1591
Cite this article:
Pournia S, Linser S, Jnawali G, et al. Exploring the band structure of Wurtzite InAs nanowires using photocurrent spectroscopy. Nano Research, 2020, 13(6): 1586-1591. https://doi.org/10.1007/s12274-020-2774-0
Topics:

722

Views

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 12 November 2019
Revised: 04 March 2020
Accepted: 22 March 2020
Published: 14 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return