Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence

Jinhua Wang§Bin Song§Jiali TangGuyue HuJingyang WangMingyue CuiYao He ()
Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China

§ Jinhua Wang and Bin Song contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Optical silicon (Si)-based materials are highly attractive due to their widespread applications ranging from electronics to biomedicine. It is worth noting that while extensive efforts have been devoted to developing fluorescent Si-based structures, there currently exist no examples of Si-based materials featuring phosphorescence emission, severely limiting Si-based wide-ranging optical applications. To address this critical issue, we herein introduce a kind of Si-based material, in which metal-organic frameworks (MOFs) are in-situ growing on the surface of Si nanoparticles (SiNPs) assisted by microwave irradiation. Of particular significance, the resultant materials, i.e., MOFs-encapsulated SiNPs (MOFs@SiNPs) could exhibit pH-responsive fluorescence, whose maximum emission wavelength is red-shifted from 442 to 592 nm when the pH increases from 2 to 13. More importantly, distinct room-temperature phosphorescence (maximum emission wavelength: 505 nm) could be observed in this system, with long lifetime of 215 ms. Taking advantages of above-mentioned unique optical properties, the MOFs@SiNPs are further employed as high-quality anti-counterfeiting inks for advanced encryption. In comparison to conventional fluorescence anti-counterfeiting techniques (static fluorescence outputs are generally used, thus being easily duplicated and leading to counterfeiting risk), pH-responsive fluorescence and room-temperature phosphorescence of the resultant MOFs@SiNPs-based ink could offer advanced multi-modal security, which is therefore capable of realizing higher-level information security against counterfeiting.

Electronic Supplementary Material

Video
12274_2020_2781_MOESM2_ESM.mp4
12274_2020_2781_MOESM3_ESM.mp4
Download File(s)
12274_2020_2781_MOESM1_ESM.pdf (4.8 MB)

References

[1]
Jurbergs, D.; Rogojina, E.; Mangolini, L.; Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 2006, 88, 233116.
[2]
Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924-14927.
[3]
Greben, M.; Khoroshyy, P.; Liu, X. K.; Pi, X. D.; Valenta, J. Fully radiative relaxation of silicon nanocrystals in colloidal ensemble revealed by advanced treatment of decay kinetics. J. Appl. Phys. 2017, 122, 034304.
[4]
Marinins, A.; Yang, Z. Y.; Chen, H. Z.; Linnros, J.; Veinot, J. G. C.; Popov, S.; Sychugov, I. Photostable polymer/Si nanocrystal bulk hybrids with tunable photoluminescence. ACS Photonics 2016, 3, 1575-1580.
[5]
Joo, J.; Defforge, T.; Loni, A.; Kim, D.; Li, Z. Y.; Sailor, M. J.; Gautier, G.; Canham, L. T. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl. Phys. Lett. 2016, 108, 153111.
[6]
Shen, X. B.; Song, B.; Fang, B.; Yuan, X.; Li, Y. Y.; Wang, S. Y.; Ji, S. J.; He, Y. Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles. Nano Res. 2019, 12, 315-322.
[7]
Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768-2780.
[8]
Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.
[9]
Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.
[10]
Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297-14340.
[11]
Park, K.; Park, M.; Jang, H. S.; Park, J. H.; Kim, J.; Cho, Y.; Han, I. K.; Byun, D.; Ko, H. Highly secure plasmonic encryption keys combined with upconversion luminescence nanocrystals. Adv. Funct. Mater. 2018, 28, 1800369.
[12]
Jin, L.; Dong, Z. G.; Mei, S. T.; Yu, Y. F.; Wei, Z.; Pan, Z. Y.; Rezaei, S. D.; Li, X. P.; Kuznetsov, A. I.; Kivshar, Y. S. et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett. 2018, 18, 8016-8024.
[13]
Zheng, Y. H.; Jiang, C.; Ng, S. H.; Lu, Y.; Han, F.; Bach, U.; Gooding, J. J. Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 2016, 28, 2330-2336.
[14]
Nie, X. K.; Xu, Y. T.; Song, Z. L.; Ding, D.; Gao, F.; Liang, H.; Chen, L.; Bian, X.; Chen, Z.; Tan, W. H. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting. Nanoscale 2014, 6, 13097-13103.
[15]
Chen, H. M.; Song, M.; Guo, Z.; Li, R. F.; Zou, Q. M.; Luo, S. J.; Zhang, S.; Luo, Q.; Hong, J.; You, L. Highly secure physically unclonable cryptographic primitives based on interfacial magnetic anisotropy. Nano Lett. 2018, 18, 7211-7216.
[16]
Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.
[17]
Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606-3617.
[18]
Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231-7235.
[19]
Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579-1584.
[20]
Li, X.; Xie, Y. J.; Song, B.; Zhang, H. L.; Chen, H.; Cai, H. J.; Liu, W. S.; Tang, Y. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption. Angew. Chem., Int. Ed. 2017, 56, 2689-2693.
[21]
Chung, K.; McAllister, A.; Bilby, D.; Kim, B. G.; Kwon, M. S.; Kioupakis, E.; Kim, J. Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. Chem. Sci. 2015, 6, 6980-6985.
[22]
Gao, Z. H.; Wei, C.; Yan, Y. L.; Zhang, W.; Dong, H. Y.; Zhao, J. Y.; Yi, J.; Zhang, C. H.; Li, Y. J.; Zhao, Y. S. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv. Mater. 2017, 29, 1701558.
[23]
You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 2019, 12, 1417-1422.
[24]
Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed. 2016, 55, 2464-2469.
[25]
Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed. 2016, 55, 2773-2777.
[26]
Dong, L. M.; Chen, Z.; Ye, L.; Yu, Y.; Zhang, J. B.; Liu, H.; Zang, J. F. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 2019, 12, 1733-1738.
[27]
Zhou, W. L.; Chen, Y.; Yu, Q. L.; Li, P. Y.; Chen, X. M.; Liu, Y. Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chem. Sci. 2019, 10, 3346-3352.
[28]
Feng, P. F.; Kong, M. Y.; Yang, Y. W.; Su, P. R.; Shan, C. F.; Yang, X. X.; Cao, J.; Liu, W. S.; Feng, W.; Tang, Y. Eu2+/Eu3+-based smart duplicate responsive stimuli and time-gated nanohybrid for optical recording and encryption. ACS Appl. Mater. Interfaces 2019, 11, 1247-1253.
[29]
Han, C.; Tang, Z. R.; Liu, J. X.; Jin, S. Y.; Xu, Y. J. Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal-semiconductor hybrids. Chem. Sci. 2019, 10, 3514-3522.
[30]
Buso, D.; Jasieniak, J.; Lay, M. D. H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A. J.; Falcaro, P. Highly luminescent metal-organic frameworks through quantum dot doping. Small 2012, 8, 80-88.
[31]
Lohe, M. R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet-functionalized metal-organic frameworks. Chem. Commun. 2011, 47, 3075-3077.
[32]
Stylianou, K. C.; Rabone, J.; Chong, S. Y.; Heck, R.; Armstrong, J.; Wiper, P. V.; Jelfs, K. E.; Zlatogorsky, S.; Bacsa, J.; McLennan, A. G. et al. Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal-organic framework. J. Am. Chem. Soc. 2012, 134, 20466-20478.
[33]
Kim, H. K.; Yun, W. S.; Kim, M. B.; Kim, J. Y.; Bae, Y. S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-10015.
[34]
Li, C. P.; Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958-5972.
[35]
Yang, X. G.; Yan, D. P. Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519-4526.
[36]
Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726-14732.
[37]
Xu, L. H.; Fang, G. Z.; Liu, J. F.; Pan, M. F.; Wang, R. R.; Wang, S. One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing. J. Mater. Chem. A 2016, 4, 15880-15887.
[38]
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
[39]
Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S. B.; van Tendeloo, G.; Fischer, R. A. GaN@ZIF-8: Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework. J. Am. Chem. Soc. 2011, 133, 16370-16373.
[40]
Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728-1731.
[41]
Hermes, S.; Schröder, F.; Amirjalayer, S.; Schmid, R.; Fischer, R. A. Loading of porous metal-organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem. 2006, 16, 2464-2472.
[42]
Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770-1839.
[43]
Ma, D. L.; Ma, V. P. Y.; Chan, D. S. H.; Leung, K. H.; He, H. Z.; Leung, C. H. Recent advances in luminescent heavy metal complexes for sensing. Coord. Chem. Rev. 2012, 256, 3087-3113.
[44]
Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302.
[45]
Feng, P. L.; Perry Iv, J. J.; Nikodemski, S.; Jacobs, B. W.; Meek, S. T.; Allendorf, M. D. Assessing the purity of metal-organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc. 2010, 132, 15487-15489.
[46]
Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 2013, 29, 8140-8145.
[47]
Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D'arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc. 2013, 135, 10942-10945.
[48]
Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477-14484.
[49]
Malik, A. H.; Kalita, A.; Iyer, P. K. Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2017, 9, 37501-37508.
[50]
Yang, L.; Liu, Y.; Zhong, Y. L.; Jiang, X. X.; Song, B.; Ji, X. Y.; Su, Y. Y.; Liao, L. S.; He, Y. Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Appl. Phys. Lett. 2015, 106, 173109.
Nano Research
Pages 1614-1619
Cite this article:
Wang J, Song B, Tang J, et al. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Research, 2020, 13(6): 1614-1619. https://doi.org/10.1007/s12274-020-2781-1
Topics:
Metrics & Citations  
Article History
Copyright
Return