AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence

Jinhua Wang§Bin Song§Jiali TangGuyue HuJingyang WangMingyue CuiYao He( )
Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China

§ Jinhua Wang and Bin Song contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Optical silicon (Si)-based materials are highly attractive due to their widespread applications ranging from electronics to biomedicine. It is worth noting that while extensive efforts have been devoted to developing fluorescent Si-based structures, there currently exist no examples of Si-based materials featuring phosphorescence emission, severely limiting Si-based wide-ranging optical applications. To address this critical issue, we herein introduce a kind of Si-based material, in which metal-organic frameworks (MOFs) are in-situ growing on the surface of Si nanoparticles (SiNPs) assisted by microwave irradiation. Of particular significance, the resultant materials, i.e., MOFs-encapsulated SiNPs (MOFs@SiNPs) could exhibit pH-responsive fluorescence, whose maximum emission wavelength is red-shifted from 442 to 592 nm when the pH increases from 2 to 13. More importantly, distinct room-temperature phosphorescence (maximum emission wavelength: 505 nm) could be observed in this system, with long lifetime of 215 ms. Taking advantages of above-mentioned unique optical properties, the MOFs@SiNPs are further employed as high-quality anti-counterfeiting inks for advanced encryption. In comparison to conventional fluorescence anti-counterfeiting techniques (static fluorescence outputs are generally used, thus being easily duplicated and leading to counterfeiting risk), pH-responsive fluorescence and room-temperature phosphorescence of the resultant MOFs@SiNPs-based ink could offer advanced multi-modal security, which is therefore capable of realizing higher-level information security against counterfeiting.

Electronic Supplementary Material

Video
12274_2020_2781_MOESM2_ESM.mp4
12274_2020_2781_MOESM3_ESM.mp4
Download File(s)
12274_2020_2781_MOESM1_ESM.pdf (4.8 MB)

References

[1]
Jurbergs, D.; Rogojina, E.; Mangolini, L.; Kortshagen, U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 2006, 88, 233116.
[2]
Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924-14927.
[3]
Greben, M.; Khoroshyy, P.; Liu, X. K.; Pi, X. D.; Valenta, J. Fully radiative relaxation of silicon nanocrystals in colloidal ensemble revealed by advanced treatment of decay kinetics. J. Appl. Phys. 2017, 122, 034304.
[4]
Marinins, A.; Yang, Z. Y.; Chen, H. Z.; Linnros, J.; Veinot, J. G. C.; Popov, S.; Sychugov, I. Photostable polymer/Si nanocrystal bulk hybrids with tunable photoluminescence. ACS Photonics 2016, 3, 1575-1580.
[5]
Joo, J.; Defforge, T.; Loni, A.; Kim, D.; Li, Z. Y.; Sailor, M. J.; Gautier, G.; Canham, L. T. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying. Appl. Phys. Lett. 2016, 108, 153111.
[6]
Shen, X. B.; Song, B.; Fang, B.; Yuan, X.; Li, Y. Y.; Wang, S. Y.; Ji, S. J.; He, Y. Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles. Nano Res. 2019, 12, 315-322.
[7]
Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768-2780.
[8]
Phillips, E.; Penate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.
[9]
Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.
[10]
Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297-14340.
[11]
Park, K.; Park, M.; Jang, H. S.; Park, J. H.; Kim, J.; Cho, Y.; Han, I. K.; Byun, D.; Ko, H. Highly secure plasmonic encryption keys combined with upconversion luminescence nanocrystals. Adv. Funct. Mater. 2018, 28, 1800369.
[12]
Jin, L.; Dong, Z. G.; Mei, S. T.; Yu, Y. F.; Wei, Z.; Pan, Z. Y.; Rezaei, S. D.; Li, X. P.; Kuznetsov, A. I.; Kivshar, Y. S. et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett. 2018, 18, 8016-8024.
[13]
Zheng, Y. H.; Jiang, C.; Ng, S. H.; Lu, Y.; Han, F.; Bach, U.; Gooding, J. J. Unclonable plasmonic security labels achieved by shadow-mask-lithography-assisted self-assembly. Adv. Mater. 2016, 28, 2330-2336.
[14]
Nie, X. K.; Xu, Y. T.; Song, Z. L.; Ding, D.; Gao, F.; Liang, H.; Chen, L.; Bian, X.; Chen, Z.; Tan, W. H. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting. Nanoscale 2014, 6, 13097-13103.
[15]
Chen, H. M.; Song, M.; Guo, Z.; Li, R. F.; Zou, Q. M.; Luo, S. J.; Zhang, S.; Luo, Q.; Hong, J.; You, L. Highly secure physically unclonable cryptographic primitives based on interfacial magnetic anisotropy. Nano Lett. 2018, 18, 7211-7216.
[16]
Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.
[17]
Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606-3617.
[18]
Jiang, K.; Zhang, L.; Lu, J. F.; Xu, C. X.; Cai, C. Z.; Lin, H. W. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting. Angew. Chem., Int. Ed. 2016, 55, 7231-7235.
[19]
Zhang, Z. H.; Chen, Z. Y.; Sun, L. Y.; Zhang, X. X.; Zhao, Y. J. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 2019, 12, 1579-1584.
[20]
Li, X.; Xie, Y. J.; Song, B.; Zhang, H. L.; Chen, H.; Cai, H. J.; Liu, W. S.; Tang, Y. A stimuli-responsive smart lanthanide nanocomposite for multidimensional optical recording and encryption. Angew. Chem., Int. Ed. 2017, 56, 2689-2693.
[21]
Chung, K.; McAllister, A.; Bilby, D.; Kim, B. G.; Kwon, M. S.; Kioupakis, E.; Kim, J. Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. Chem. Sci. 2015, 6, 6980-6985.
[22]
Gao, Z. H.; Wei, C.; Yan, Y. L.; Zhang, W.; Dong, H. Y.; Zhao, J. Y.; Yi, J.; Zhang, C. H.; Li, Y. J.; Zhao, Y. S. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv. Mater. 2017, 29, 1701558.
[23]
You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 2019, 12, 1417-1422.
[24]
Li, X. M.; Guo, Z. Z.; Zhao, T. C.; Lu, Y.; Zhou, L.; Zhao, D. Y.; Zhang, F. Filtration shell mediated power density independent orthogonal excitations-emissions upconversion luminescence. Angew. Chem., Int. Ed. 2016, 55, 2464-2469.
[25]
Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed. 2016, 55, 2773-2777.
[26]
Dong, L. M.; Chen, Z.; Ye, L.; Yu, Y.; Zhang, J. B.; Liu, H.; Zang, J. F. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Res. 2019, 12, 1733-1738.
[27]
Zhou, W. L.; Chen, Y.; Yu, Q. L.; Li, P. Y.; Chen, X. M.; Liu, Y. Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink. Chem. Sci. 2019, 10, 3346-3352.
[28]
Feng, P. F.; Kong, M. Y.; Yang, Y. W.; Su, P. R.; Shan, C. F.; Yang, X. X.; Cao, J.; Liu, W. S.; Feng, W.; Tang, Y. Eu2+/Eu3+-based smart duplicate responsive stimuli and time-gated nanohybrid for optical recording and encryption. ACS Appl. Mater. Interfaces 2019, 11, 1247-1253.
[29]
Han, C.; Tang, Z. R.; Liu, J. X.; Jin, S. Y.; Xu, Y. J. Efficient photoredox conversion of alcohol to aldehyde and H2 by heterointerface engineering of bimetal-semiconductor hybrids. Chem. Sci. 2019, 10, 3514-3522.
[30]
Buso, D.; Jasieniak, J.; Lay, M. D. H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A. J.; Falcaro, P. Highly luminescent metal-organic frameworks through quantum dot doping. Small 2012, 8, 80-88.
[31]
Lohe, M. R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet-functionalized metal-organic frameworks. Chem. Commun. 2011, 47, 3075-3077.
[32]
Stylianou, K. C.; Rabone, J.; Chong, S. Y.; Heck, R.; Armstrong, J.; Wiper, P. V.; Jelfs, K. E.; Zlatogorsky, S.; Bacsa, J.; McLennan, A. G. et al. Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal-organic framework. J. Am. Chem. Soc. 2012, 134, 20466-20478.
[33]
Kim, H. K.; Yun, W. S.; Kim, M. B.; Kim, J. Y.; Bae, Y. S.; Lee, J.; Jeong, N. C. A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2. J. Am. Chem. Soc. 2015, 137, 10009-10015.
[34]
Li, C. P.; Du, M. Role of solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958-5972.
[35]
Yang, X. G.; Yan, D. P. Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability. Chem. Sci. 2016, 7, 4519-4526.
[36]
Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726-14732.
[37]
Xu, L. H.; Fang, G. Z.; Liu, J. F.; Pan, M. F.; Wang, R. R.; Wang, S. One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing. J. Mater. Chem. A 2016, 4, 15880-15887.
[38]
Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310-316.
[39]
Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S. B.; van Tendeloo, G.; Fischer, R. A. GaN@ZIF-8: Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework. J. Am. Chem. Soc. 2011, 133, 16370-16373.
[40]
Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728-1731.
[41]
Hermes, S.; Schröder, F.; Amirjalayer, S.; Schmid, R.; Fischer, R. A. Loading of porous metal-organic open frameworks with organometallic CVD precursors: Inclusion compounds of the type [LnM]a@MOF-5. J. Mater. Chem. 2006, 16, 2464-2472.
[42]
Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770-1839.
[43]
Ma, D. L.; Ma, V. P. Y.; Chan, D. S. H.; Leung, K. H.; He, H. Z.; Leung, C. H. Recent advances in luminescent heavy metal complexes for sensing. Coord. Chem. Rev. 2012, 256, 3087-3113.
[44]
Xu, H.; Chen, R. F.; Sun, Q.; Lai, W. Y.; Su, Q. Q.; Huang, W.; Liu, X. G. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302.
[45]
Feng, P. L.; Perry Iv, J. J.; Nikodemski, S.; Jacobs, B. W.; Meek, S. T.; Allendorf, M. D. Assessing the purity of metal-organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc. 2010, 132, 15487-15489.
[46]
Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 2013, 29, 8140-8145.
[47]
Hendon, C. H.; Tiana, D.; Fontecave, M.; Sanchez, C.; D'arras, L.; Sassoye, C.; Rozes, L.; Mellot-Draznieks, C.; Walsh, A. Engineering the optical response of the titanium-MIL-125 metal-organic framework through ligand functionalization. J. Am. Chem. Soc. 2013, 135, 10942-10945.
[48]
Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477-14484.
[49]
Malik, A. H.; Kalita, A.; Iyer, P. K. Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte. ACS Appl. Mater. Interfaces 2017, 9, 37501-37508.
[50]
Yang, L.; Liu, Y.; Zhong, Y. L.; Jiang, X. X.; Song, B.; Ji, X. Y.; Su, Y. Y.; Liao, L. S.; He, Y. Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Appl. Phys. Lett. 2015, 106, 173109.
Nano Research
Pages 1614-1619
Cite this article:
Wang J, Song B, Tang J, et al. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Research, 2020, 13(6): 1614-1619. https://doi.org/10.1007/s12274-020-2781-1
Topics:

758

Views

46

Crossref

N/A

Web of Science

45

Scopus

3

CSCD

Altmetrics

Received: 22 December 2019
Revised: 28 March 2020
Accepted: 28 March 2020
Published: 14 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return