AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission

Shuai Tang1Jie Tang1,2( )Ta-wei Chiu1,2Wataru Hayami1Jun Uzuhashi1Tadakatsu Ohkubo1Fumihiko Uesugi1Masaki Takeguchi1Masanori Mitome1Lu-Chang Qin3( )
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8857, Japan
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
Show Author Information

Graphical Abstract

Abstract

Electric field-induced point electron source is highly demanded for microscopy, spectroscopy, lithography, X-ray tubes, microwave devices, and data displays. However, the instability in emission current and requirement of ultrahigh vacuum have often limited its extensive applications. Herewith we report a single-crystalline HfC nanowire with oxycarbide emission surface for stable electron emission at 50 nA with fluctuations less than 1% in a vacuum of 4 × 10-7 Pa. The emitter has a low work function of 2.5 eV measured by the field emission Fowler-Nordheim curve and it is in good agreement with density functional theory (DFT) calculations. The energy spread is in a range of 0.21-0.26 eV with a corresponding reduced brightness 1.95 × 1011-3.81 × 1011 A·m-2·sr-1·V-1. The HfC nanowire with oxycarbide emission surface is a qualified candidate for the next-generation electron source with high brightness, large current, and low energy spread.

References

[1]
Crewe, A. V.; Eggenberger, D. N.; Wall, J.; Welter, L. M. Electron gun using a field emission source. Rev. Sci. Instrum. 1968, 39, 576-583.
[2]
de Heer, W. A.; Châtelain, A.; Ugarte, D. A carbon nanotube field-emission electron source. Science 1995, 270, 1179-1180.
[3]
Houdellier, F.; de Knoop, L.; Gatel, C.; Masseboeuf, A.; Mamishin, S.; Taniguchi, Y.; Delmas, M.; Monthioux, M.; Hÿtch, M. J.; Snoeck, E. Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy 2015, 151, 107-115.
[4]
Guo, G. X.; Tokunaga, K.; Yin, E.; Tsai, F. C.; Brodie, A. D.; Parker, N. W. Use of microfabricated cold field emitters in sub-100 nm maskless lithography. J. Vac. Sci. Technol. B 2001, 19, 862-865.
[5]
Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y. Z.; Lu, J. P.; Zhou, O. Stationary scanning X-ray source based on carbon nanotube field emitters. Appl. Phys. Lett .2005, 86, 184104.
[6]
Teo, K. B. K.; Minoux, E.; Hudanski, L.; Peauger, F.; Schnell, J. P.; Gangloff, L.; Legagneux, P.; Dieumegard, D.; Amaratunga, G. A. J.; Milne, W. I. Microwave devices: Carbon nanotubes as cold cathodes. Nature 2005, 437, 968.
[7]
Chen, J.; Dai, Y. Y.; Luo, J.; Li, Z. L.; Deng, S. Z.; She, J. C.; Xu, N. S. Field emission display device structure based on double-gate driving principle for achieving high brightness using a variety of field emission nanoemitters. Appl. Phys. Lett .2007, 90, 253105.
[8]
Xu, N. S.; Huq, S. E. Novel cold cathode materials and applications. Mat. Sci. Eng. R 2005, 48, 47-189.
[9]
Schwind, G. A.; Magera, G.; Swanson, L. W. Comparison of parameters for Schottky and cold field emission sources. J. Vac. Sci. Technol. B 2006, 24, 2897-2901.
[10]
Swanson, L. W.; Schwind, G. A. A review of the cold-field electron cathode. Adv. Imag. Elec. Phys .2009, 159, 63-100.
[11]
Kasuya, K.; Katagiri, S.; Ohshima, T.; Kokubo, S. Stabilization of a tungsten <310> cold field emitter. J. Vac. Sci. Technol. B 2010, 28, L55-L60.
[12]
Andrievskii, R. A.; Strel'nikova, N. S.; Poltoratskii, N. I.; Kharkhardin, E. D.; Smirnov, V. S. Melting point in systems ZrC-HfC, TaC-ZrC, TaC-HfC. Powder Metall. Met. Ceram 1967, 6, 65-67.
[13]
Williams, W. S. Electrical properties of hard materials. Int. J. Refract. Met. Hard Mat .1999, 17, 21-26.
[14]
Opeka, M. M.; Talmy, I. G.; Wuchina, E. J.; Zaykoski, J. A.; Causey, S. J. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc .1999, 19, 2405-2414.
[15]
Yu, M. L.; Hussey, B. W.; Kratschmer, E.; Chang, T. H. P. Improved emission stability of carburized HfC< 100> and ultrasharp tungsten field emitters. J. Vac. Sci. Technol. B 1995, 13, 2436-2440.
[16]
Kagarice, K. J.; Magera, G. G.; Pollard, S. D.; Mackie, W. A. Cold field emission from HfC (310). J. Vac. Sci. Technol. B 2008, 26, 868-871.
[17]
Liu, W.; Zheng, W. T.; Jiang, Q. First-principles study of the surface energy and work function of III-V semiconductor compounds. Phys. Rev. B 2007, 75, 235322.
[18]
Mackie, W. A.; Morrissey, J. L.; Hinrichs, C. H.; Davis, P. R. Field emission from hafnium carbide. J. Vac. Sci. Technol. A 1992, 10, 2852-2856.
[19]
Otani, S.; Tanaka, T. Preparation of HfC single crystals by a floating zone technique. J. Cryst. Growth 1981, 51, 381-386.
[20]
Rogl, P.; Naik, S. K.; Rudy, E. A constitutional diagram of the system TiC-HfC-WC. Monatsh. Chem .1977, 108, 1189-1211.
[21]
Yuan, J. S.; Zhang, H.; Tang, J.; Shinya, N.; Nakajima, K.; Qin, L-C. Synthesis and characterization of single crystalline hafnium carbide nanowires. J. Am. Ceram. Soc .2012, 95, 2352-2356.
[22]
Fowler, R. H.; Nordheim, L. Electron emission in intense electric fields. Proc. R. Soc. Lond. A 1928, 119, 173-181.
[23]
Zhang, H.; Tang, J.; Zhang, Q.; Zhao, G.; Yang, G.; Zhang, J.; Zhou, O.; Qin, L-C. Field emission of electrons from single LaB6 nanowires. Adv. Mater .2006, 18, 87-91.
[24]
Swanson, L. W.; Martin, N. A. Field electron cathode stability studies: Zirconium/tungsten thermal-field cathode. J. Appl. Phys .1975, 46, 2029-2050.
[25]
Bronsgeest, M. S.; Barth, J. E.; Swanson, L. W.; Kruit, P. Probe current, probe size, and the practical brightness for probe forming systems. J. Vac. Sci. Technol. B 2008, 26, 949-955.
[26]
Young, R. D. Theoretical total-energy distribution of field-emitted electrons. Phys. Rev .1959, 113, 110-114.
[27]
Gambardella, P.; Šljivančanin, Ž.; Hammer, B.; Blanc, M.; Kuhnke, K.; Kern, K. Oxygen dissociation at Pt steps. Phys. Rev. Lett .2001, 87, 056103.
[28]
Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett .1999, 83, 1814-1817.
[29]
Snijders, P. C.; Rogge, S.; González, C.; Pérez, R.; Ortega, J.; Flores, F.; Weitering, H. H. Ga-induced atom wire formation and passivation of stepped Si (112). Phys. Rev. B 2005, 72, 125343.
[30]
Shimada, S.; Inagaki, M.; Matsui, K. Oxidation kinetics of hafnium carbide in the temperature range of 480° to 600° C. J. Am. Ceram. Soc .1992, 75, 2671-2678.
[31]
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.
[32]
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.
[33]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett .1996, 77, 3865-3868.
[34]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
Nano Research
Pages 1620-1626
Cite this article:
Tang S, Tang J, Chiu T-w, et al. A HfC nanowire point electron source with oxycarbide surface of lower work function for high-brightness and stable field-emission. Nano Research, 2020, 13(6): 1620-1626. https://doi.org/10.1007/s12274-020-2782-0
Topics:

824

Views

18

Crossref

N/A

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 20 January 2020
Revised: 20 March 2020
Accepted: 29 March 2020
Published: 12 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return