AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration

Chun Xu1,2,3Lan Xiao4Yuxue Cao1Yan He1,5,6Chang Lei7Yin Xiao4Wujin Sun2,3Samad Ahadian2,3Xueting Zhou8Ali Khademhosseini2,3,9,10,11( )Qingsong Ye5,6,( )
School of Dentistry, The University of Queensland, Herston, QLD, 4006, Australia
Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, 4006, Australia
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325035, China
Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA 02114, USA
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Department of Radiological Sciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90095, USA

Present address: Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China

Show Author Information

Graphical Abstract

Abstract

Biomaterials with suitable osteoimmunomodulation properties and ability to deliver osteoinductive biomolecules, such as bone morphogenetic proteins, are desired for bone regeneration. Herein, we report the development of mesoporous silica rods with large cone-shaped pores (MSR-CP) to load and deliver large protein drugs. It is noted that those cone-shaped pores on the surface modulated the immune response and reduced the pro-inflammatory reaction of stimulated macrophage. Furthermore, bone morphogenetic proteins 2 (BMP-2) loaded MSR-CP facilitated osteogenic differentiation and promoted osteogenesis of bone marrow stromal cells. In vivo tests confirmed BMP-2 loaded MSR-CP improved the bone regeneration performance. This study provides a potential strategy for the design of drug delivery systems for bone regeneration.

Electronic Supplementary Material

Download File(s)
12274_2020_2783_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18-25.
[2]
Marrella, A.; Lee, T. Y.; Lee, D. H.; Karuthedom, S.; Syla, D.; Chawla, A.; Khademhosseini, A.; Jang, H. L. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater. Today 2018, 21, 362-376.
[3]
Krishnakumar, G. S.; Sampath, S.; Muthusamy, S.; John, M. A. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. Mat. Sci. Eng. C 2019, 96, 941-954.
[4]
Roi, A.; Ardelean, L. C.; Roi, C. I.; Boia, E. R.; Boia, S.; Rusu, L. C. Oral bone tissue engineering: Advanced biomaterials for cell adhesion, proliferation and differentiation. Materials 2019, 12, 2296.
[5]
Qu, H. W.; Fu, H. Y.; Han, Z. Y.; Sun, Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019, 9, 26252-26262.
[6]
Byambaa, B.; Annabi, N.; Yue, K.; Trujillo-de Santiago, G.; Alvarez, M. M.; Jia, W. T.; Kazemzadeh-Narbat, M.; Shin, S. R.; Tamayol, A.; Khademhosseini, A. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv. Healthc. Mater. 2017, 6, .
[7]
Termaat, M. F.; Den Boer, F. C.; Bakker, F. C.; Patka, P.; Haarman, H. J. T. M. Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J. Bone Joint Surg. Am. 2005, 87, 1367-1378.
[8]
Haidar, Z. S.; Hamdy, R. C.; Tabrizian, M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol. Lett. 2009, 31, 1817-1824.
[9]
Chen, D.; Zhao, M.; Mundy, G. R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233-241.
[10]
Park, S. B.; Park, S. H.; Kim, N. H.; Chung, C. K. BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model. Spine J. 2013, 13, 1273-1280.
[11]
Zhang, S. F.; Kucharski, C.; Doschak, M. R.; Sebald, W.; Uludağ, H. Polyethylenimine-PEG coated albumin nanoparticles for BMP-2 delivery. Biomaterials 2010, 31, 952-963.
[12]
Engstrand, T.; Veltheim, R.; Arnander, C.; Docherty-Skogh, A. C.; Westermark, A.; Ohlsson, C.; Adolfsson, L.; Larm, O. A novel biodegradable delivery system for bone morphogenetic protein-2. Plast. Reconstr. Surg. 2008, 121, 1920-1928.
[13]
Mont, M. A.; Ragland, P. S.; Biggins, B.; Friedlaender, G.; Patel, T.; Cook, S.; Etienne, G.; Shimmin, A.; Kildey, R.; Rueger, D. C. et al. Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J. Bone Joint Surg. Am. 2004, 86, 41-55.
[14]
Wu, C. T.; Zhou, Y. H.; Xu, M. C.; Han, P. P.; Chen, L.; Chang, J.; Xiao, Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013, 34, 422-433.
[15]
Cheng, H.; Chewla, A.; Yang, Y. F.; Li, Y. X.; Zhang, J.; Jang, H. L.; Khademhosseini, A. Development of nanomaterials for bone-targeted drug delivery. Drug Discov. Today 2017, 22, 1336-1350.
[16]
Porter, J. R.; Ruckh, T. T.; Popat, K. C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol. Prog. 2009, 25, 1539-1560.
[17]
Xu, C.; Niu, Y. T.; Popat, A.; Jambhrunkar, S.; Karmakar, S.; Yu, C. Z. Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. J. Mater. Chem. B 2014, 2, 253-256.
[18]
Niu, Y. T.; Yu, M. H.; Zhang, J.; Yang, Y. N.; Xu, C.; Yeh, M.; Taran, E.; Hou, J. J. C.; Gray, P. P.; Yu, C. Z. Synthesis of silica nanoparticles with controllable surface roughness for therapeutic protein delivery. J. Mater. Chem. B 2015, 3, 8477-8485.
[19]
Xu, C.; Yu, M. H.; Noonan, O.; Zhang, J.; Song, H.; Zhang, H. W.; Lei, C.; Niu, Y. T.; Huang, X. D.; Yang, Y. N. et al. Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 2015, 11, 5949-5955.
[20]
Xu, C.; Lei, C.; Huang, L. L.; Zhang, J.; Zhang, H. W.; Song, H.; Yu, M. H.; Wu, Y. D.; Chen, C.; Yu, C. Z. Glucose-responsive nanosystem mimicking the physiological insulin secretion via an enzyme-polymer layer-by-layer coating strategy. Chem. Mater. 2017, 29, 7725-7732.
[21]
Xu, C.; He, Y.; Li, Z. H.; Nor, Y. A.; Ye, Q. S. Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. J. Mater. Chem. B 2018, 6, 1899-1902.
[22]
Xu, C.; Lei, C.; Yu, C. Z. Mesoporous silica nanoparticles for protein protection and delivery. Fron. Chem. 2019, 7, 290.
[23]
Xia, W.; Chang, J. Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system. J. Control. Release 2006, 110, 522-530.
[24]
Zhu, G. J.; Zhang, F. Z.; Li, X. M.; Luo, W.; Li, L.; Zhang, H.; Wang, L. J.; Wang, Y. X.; Jiang, W.; Liu, H. K. et al. Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes. Angew. Chem., Int. Ed. 2019, 58, 6669-6673.
[25]
Yang, J. P.; Zhang, F.; Li, W.; Gu, D.; Shen, D. K.; Fan, J. W.; Zhang, W. X.; Zhao, D. Y. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chem. Commun. 2014, 50, 713-715.
[26]
Qu, F. Y.; Lin, H. M.; Wu, X.; Li, X. F.; Qiu, S. L.; Zhu, G. S. Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery. Solid State Sci. 2010, 12, 851-856.
[27]
Manzano, M.; Vallet-Regí, M. New developments in ordered mesoporous materials for drug delivery. J. Mater. Chem. 2010, 20, 5593-5604.
[28]
Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030-3037.
[29]
Shi, M. C.; Zhou, Y. H.; Shao, J.; Chen, Z. T.; Song, B. T.; Chang, J.; Wu, C. T.; Xiao, Y. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015, 21, 178-189.
[30]
Gaharwar, A. K.; Mihaila, S. M.; Swami, A.; Patel, A.; Sant, S.; Reis, R. L.; Marques, A. P.; Gomes, M. E.; Khademhosseini, A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv. Mater. 2013, 25, 3329-3336.
[31]
Meka, A. K.; Abbaraju, P. L.; Song, H.; Xu, C.; Zhang, J.; Zhang, H. W.; Yu, M. H.; Yu, C. Z. A vesicle supra-assembly approach to synthesize amine-functionalized hollow dendritic mesoporous silica nanospheres for protein delivery. Small 2016, 12, 5169-5177.
[32]
Li, H. M.; Guo, H. L.; Lei, C.; Liu, L.; Xu, L. Q.; Feng, Y. P.; Ke, J.; Fang, W.; Song, H.; Xu, C. et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv. Mater. 2019, 31, 1904535.
[33]
Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.
[34]
Chen, Z. T.; Bachhuka, A.; Han, S. W.; Wei, F.; Lu, S.; Visalakshan, R. M.; Vasilev, K.; Xiao, Y. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano 2017, 11, 4494-4506.
[35]
Chen, Z. T.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C. T.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today 2016, 19, 304-321.
[36]
Chen, Z. T.; Yuen, J.; Crawford, R.; Chang, J.; Wu, C. T.; Xiao, Y. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials 2015, 61, 126-138.
[37]
Yamamura, M.; Mukai, T.; Otsuka, F.; Yamashita, M.; Takasugi, K.; Makino, H. Inhibition of bone morphogenetic protein-induced osteoblast differentiation by tumor necrosis factor-a. Ann. Rheum Dis. 2007, 66, 155-155.
[38]
Yamashita, M.; Otsuka, F.; Mukai, T.; Otani, H.; Inagaki, K.; Miyoshi, T.; Goto, J.; Yamamura, M.; Makino, H. Simvastatin antagonizes tumor necrosis factor-α inhibition of bone morphogenetic proteins-2-induced osteoblast differentiation by regulating Smad signaling and Ras/Rho-mitogen-activated protein kinase pathway. J. Endocrinol. 2008, 196, 601-613.
[39]
Caetano-Lopes, J.; Canhão, H.; Fonseca, J. E. Osteoimmunology-The hidden immune regulation of bone. Autoimmun. Rev. 2009, 8, 250-255.
[40]
Lü, W. L.; Wang, N.; Gao, P.; Li, C. Y.; Zhao, H. S.; Zhang, Z. T. Effects of anodic titanium dioxide nanotubes of different diameters on macrophage secretion and expression of cytokines and chemokines. Cell Proliferat. 2015, 48, 95-104.
[41]
Jakobsen, S. S.; Larsen, A.; Stoltenberg, M.; Bruun, J. M.; Soballe, K. Effects of as-cast and wrought cobalt-chrome-molybdenum and titanium-aluminium-vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages. Eur. Cell. Mater. 2007, 14, 45-54.
[42]
Neacsu, P.; Mazare, A.; Cimpean, A.; Park, J.; Costache, M.; Schmuki, P.; Demetrescu, I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int. J. Biochem. Cell Biol. 2014, 55, 187-195.
[43]
Tan, J.; Zhao, C. J.; Wang, Y.; Li, Y. T.; Duan, K.; Wang, J. X.; Weng, J.; Feng, B. Nano-topographic titanium modulates macrophage response in vitro and in an implant-associated rat infection model. RSC Adv. 2016, 6, 111919-111927.
[44]
Ariganello, M. B.; Guadarrama Bello, D.; Rodriguez-Contreras, A.; Sadeghi, S.; Isola, G.; Variola, F.; Nanci, A. Surface nanocavitation of titanium modulates macrophage activity. Int. J. Nanomedicine 2018, 13, 8297-8308.
[45]
Farley, J. R.; Wergedal, J. E.; Baylink, D. J. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 1983, 222, 330-332.
[46]
Xu, C.; Xu, J.; Xiao, L.; Li, Z. H.; Xiao, Y.; Dargusch, M.; Lei, C.; He, Y.; Ye, Q. S. Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Adv. 2018, 8, 16503-16512.
[47]
Kim, K. S.; Lee, J. Y.; Kang, Y. M.; Kim, E. S.; Kim, G. H.; Dal Rhee, S.; Cheon, H. G.; Kim, J. H.; Min, B. H.; Lee, H. B. et al. Small intestine submucosa sponge for in vivo support of tissue-engineered bone formation in the presence of rat bone marrow stem cells. Biomaterials 2010, 31, 1104-1113.
[48]
Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-552.
[49]
Spicer, P. P.; Kretlow, J. D.; Young, S.; Jansen, J. A.; Kasper, F. K.; Mikos, A. G. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Protoc. 2012, 7, 1918-1929.
Nano Research
Pages 2323-2331
Cite this article:
Xu C, Xiao L, Cao Y, et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Research, 2020, 13(9): 2323-2331. https://doi.org/10.1007/s12274-020-2783-z
Topics:

947

Views

44

Crossref

N/A

Web of Science

42

Scopus

6

CSCD

Altmetrics

Received: 22 January 2020
Revised: 28 March 2020
Accepted: 30 March 2020
Published: 23 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return