AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8

Xue Liu1,2Sheng Liu2Liubov Yu. Antipina3,5,6Yibo Zhu7Jinliang Ning1Jinyu Liu1Chunlei Yue1Abin Joshy1Yu Zhu4Jianwei Sun1Ana M. Sanchez8Pavel B. Sorokin3,5Zhiqiang Mao1Qihua Xiong2Jiang Wei1( )
Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371, Singapore
National University of Science and Technology "MISiS", Moscow 119049, Russia
Department of Polymer Science, The University of Akron, Akron , Ohio44325, USA
Technological Institute for Superhard and Novel Carbon Materials, Moscow 108840, Russia
Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors.

Electronic Supplementary Material

Download File(s)
12274_2020_2784_MOESM1_ESM.pdf (3.5 MB)

References

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum hall effect in graphene. Science 2007, 315, 1379-1379.
[3]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater .2007, 6, 183-191.
[4]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol .2010, 5, 722-726.
[5]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[6]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol .2011, 6, 147-150.
[7]
Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett .2013, 13, 100-105.
[8]
Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.
[9]
Liu, X.; Hu, J.; Yue, C. L.; Della Fera, N.; Ling, Y.; Mao, Z. Q.; Wei, J. High performance field-effect transistor based on multilayer tungsten disulfide. ACS Nano 2014, 8, 10396-10402.
[10]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol .2014, 9, 372-377.
[11]
Liu, X.; Liu, J. Y.; Antipina, L. Y.; Hu, J.; Yue, C. L.; Sanchez, A. M.; Sorokin, P. B.; Mao, Z. Q.; Wei, J. Direct fabrication of functional ultrathin single-crystal nanowires from quasi-one-dimensional van der waals crystals. Nano Lett .2016, 16, 6188-6195.
[12]
Stolyarov, M. A.; Liu, G. X.; Bloodgood, M. A.; Aytan, E.; Jiang, C. L.; Samnakay, R.; Salguero, T. T.; Nika, D. L.; Rumyantsev, S. L.; Shur, M. S. et al. Breakdown current density in h-BN-capped quasi-1D TaSe3 metallic nanowires: Prospects of interconnect applications. Nanoscale 2016, 8, 15774-15782.
[13]
Liu, G. X.; Rumyantsev, S.; Bloodgood, M. A.; Salguero, T. T.; Shur, M.; Balandin, A. A. Low-frequency electronic noise in quasi-1D TaSe3 van der Waals nanowires. Nano Lett .2017, 17, 377-383.
[14]
Peng, B.; Xu, K.; Zhang, H.; Ning, Z. Y.; Shao, H. Z.; Ni, G.; Li, J.; Zhu, Y. Y.; Zhu, H. Y.; Soukoulis, C. M. 1D SbSeI, SbSI, and SbSBr with high stability and novel properties for microelectronic, optoelectronic, and thermoelectric applications. Adv. Theory Simul .2018, 1, 1700005.
[15]
Geremew, A.; Bloodgood, M. A.; Aytan, E.; Woo, B. W. K.; Corber, S. R.; Liu, G.; Bozhilov, K. N.; Salguero, T. T.; Rumyantsev, S.; Rao, M. P. et al. Current carrying capacity of quasi-1D ZrTe3 van der Waals nanoribbons. IEEE Electr. Device Lett .2018, 39, 735-738.
[16]
Bloodgood, M. A.; Wei, P. R.; Aytan, E.; Bozhilov, K. N.; Balandin, A. A.; Salguero, T. T. Monoclinic structures of niobium trisulfide. APL Mater .2018, 6, 026602.
[17]
Geremew, A. K.; Kargar, F.; Zhang, E. X.; Zhao, S. E.; Aytan, E.; Bloodgood, M. A.; Salguero, T. T.; Rumyantsev, S.; Fedoseyev, A.; Fleetwood, D. M. et al. Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. Nanoscale 2019, 11, 8380-8386.
[18]
Fox, D.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileáin, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V. et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett .2015, 15, 5307-5313.
[19]
Stanford, M. G.; Pudasaini, P. R.; Cross, N.; Mahady, K.; Hoffman, A. N.; Mandrus, D. G.; Duscher, G.; Chisholm, M. F.; Rack, P. D. Tungsten diselenide patterning and nanoribbon formation by gas-assisted focused-helium-ion-beam-induced etching. Small Methods, 2017, 1, 1600060.
[20]
Nethravathi, C.; Jeffery, A. A.; Rajamathi, M.; Kawamoto, N.; Tenne, R.; Golberg, D.; Bando, Y. Chemical unzipping of WS2 nanotubes. ACS Nano 2013, 7, 7311-7317.
[21]
Lin, J.; Peng, Z. W.; Wang, G.; Zakhidov, D.; Rodriguez, E.; Yacaman, M. J.; Tour, J. M. Enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Adv. Energy Mater .2014, 4, 1301875.
[22]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol .2008, 3, 563-568.
[23]
Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[24]
Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater .2011, 23, 3944-3948.
[25]
Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun .2014, 50, 13338-13341.
[26]
Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater .2015, 27, 1887-1892.
[27]
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater .2009, 21, 2889-2893.
[28]
Warner, J. H.; Rümmeli, M. H.; Bachmatiuk, A.; Büchner, B. Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. ACS Nano 2010, 4, 1299-1304.
[29]
Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69-73.
[30]
Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T.; Smalley, R. E. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett .1999, 303, 125-129.
[31]
Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z. Y.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z. T. T.; Carpenter, L. et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater .2008, 20, 1876-1881.
[32]
Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater .2009, 19, 3680-3695.
[33]
Cao, Q.; Han, S. J.; Tulevski, G. S.; Franklin, A. D.; Haensch, W. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. ACS Nano 2012, 6, 6471-6477.
[34]
Fuhrer, M. S.; Kim, B. M.; Dürkop, T.; Brintlinger, T. High-mobility nanotube transistor memory. Nano Lett .2002, 2, 755-759.
[35]
Dürkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett .2004, 4, 35-39.
[36]
Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol .2007, 2, 230-236.
[37]
Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495-500.
[38]
Cui, Y.; Zhang, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett .2003, 3, 149-152.
[39]
Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274-278.
[40]
Tang, M. S. Y.; Ng, E. P.; Juan, J. C.; Ooi, C. W.; Ling, T. C.; Woon, K. L.; Show, P. L. Metallic and semiconducting carbon nanotubes separation using an aqueous two-phase separation technique: A review. Nanotechnology 2016, 27, 332002.
[41]
Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M. X.; Vajtai, R.; Lou, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett .2015, 15, 5449-5454.
[42]
Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett .2013, 13, 1007-1015.
[43]
Claus, R.; Hacker, H. H.; Schrötter, H. W.; Brandmüller, J.; Haussühl, S. Low-frequency optical-phonon spectrum of benzil. Phys. Rev .1969, 187, 1128.
[44]
Ren, Z. Q.; McNeil, L. E.; Liu, S. B.; Kloc, C. Molecular motion and mobility in an organic single crystal: Raman study and model. Phys. Rev. B 2009, 80, 245211.
[45]
Ye, H. Q.; Liu, G. F.; Liu, S.; Casanova, D.; Ye, X.; Tao, X. T.; Zhang, Q. C.; Xiong, Q. H. Molecular-barrier-enhanced aromatic fluorophores in cocrystals with unity quantum efficiency. Angew. Chem., Int. Ed .2018, 57, 1928-1932.
[46]
Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708-18715.
[47]
Braga, D.; Lezama, I. G.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett .2012, 12, 5218-5223.
[48]
Lee, K.; Kim, H. Y.; Lotya, M.; Coleman, J. N.; Kim, G. T.; Duesberg, G. S. Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv. Mater .2011, 23, 4178-4182.
[49]
Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596-3604.
[50]
Kim, W. J.; Lee, C. Y.; O'Brien, K. P.; Plombon, J. J.; Blackwell, J. M.; Strano, M. S. Connecting single molecule electrical measurements to ensemble spectroscopic properties for quantification of single-walled carbon nanotube separation. J. Am. Chem. Soc .2009, 131, 3128-3129.
[51]
Wang, W. M.; LeMieux, M. C.; Selvarasah, S.; Dokmeci, M. R.; Bao, Z. N. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes. ACS Nano 2009, 3, 3543-3551.
[52]
Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett .2005, 5, 1367-1370.
[53]
Freitag, M.; Tsang, J. C.; Bol, A.; Avouris, P.; Yuan, D. N.; Liu, J. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett .2007, 91, 031101.
[54]
Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341-350.
[55]
Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater .2002, 14, 158-160.
[56]
Li, Z. J.; Hu, Z. P.; Peng, J.; Wu, C. Z.; Yang, Y. C.; Feng, F.; Gao, P.; Yang, J. L.; Xie, Y. Ultrahigh infrared photoresponse from core-shell single-domain-VO2/V2O5 heterostructure in nanobeam. Adv. Funct. Mater .2014, 24, 1821-1830.
[57]
Wu, J. M.; Chang, W. E. Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl. Mater. Interfaces 2014, 6, 14286-14292.
[58]
Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. D. Ultrafast hot-carrier-dominated photocurrent in graphene. Nat. Nanotechnol .2012, 7, 114-118.
[59]
Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett .2014, 14, 3347-3352.
[60]
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.
[61]
Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater .2012, 24, 5832-5836.
[62]
Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater .2013, 23, 5511-5517.
[63]
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol .2013, 8, 497-501.
[64]
Groenendijk, D. J.; Buscema, M.; Steele, G. A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett .2014, 14, 5846-5852.
[65]
Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504-6529.
[66]
Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology 2011, 22, 115202.
[67]
Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett .2014, 14, 4785-4791.
[68]
Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol .2014, 9, 676-681.
[69]
Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S. J.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett .2013, 13, 358-363.
[70]
Balasubramanian, K.; Fan, Y. W.; Burghard, M.; Kern, K.; Friedrich, M.; Wannek, U.; Mews, A. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett .2004, 84, 2400-2402.
[71]
Tsen, A. W.; Donev, L. A. K.; Kurt, H.; Herman, L. H.; Park, J. Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nat. Nanotechnol .2009, 4, 108-113.
[72]
Buchs, G.; Bagiante, S.; Steele, G. A. Corrigendum: Identifying signatures of photothermal current in a double-gated semiconducting nanotube. Nat. Commun .2015, 6, 5463.
[73]
Ahn, Y. H.; Tsen, A. W.; Kim, B.; Park, Y. W.; Park, J. Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors. Nano Lett .2007, 7, 3320-3323.
[74]
Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev .1964, 136, 864-871.
[75]
Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev .1965, 140, A1133-A1138.
[76]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett .1996, 77, 3865-3868.
[77]
Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.
[78]
Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251-14269.
[79]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[80]
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.
[81]
Fonari, A.; Stauffer, S. vasp_raman.py. https://github.com/raman-sc/VASP/ [online] (accessed Dec 10, 2019).
[82]
Porezag, D.; Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 1996, 54, 7830-7836.
Nano Research
Pages 1627-1635
Cite this article:
Liu X, Liu S, Yu. Antipina L, et al. High yield production of ultrathin fibroid semiconducting nanowire of Ta2Pd3Se8. Nano Research, 2020, 13(6): 1627-1635. https://doi.org/10.1007/s12274-020-2784-y
Topics:

782

Views

17

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 23 December 2019
Revised: 03 March 2020
Accepted: 31 March 2020
Published: 12 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return