AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection

Jiawen You1Ye Yu2,Kai Cai3,5Dongming Zhou4Haiming Zhu4Renyan Wang3Qingfu Zhang3Hongwei Liu1Yuting Cai1Dong Lu6Jang-Kyo KIM7Lin Gan3,5( )Tianyou Zhai3( )Zhengtang Luo1( )
Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, Dresden 01069, Germany
State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Shenzhen R&D Center of Huazhong University of Science and Technology, Shenzhen 518000, China
Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Present address: Institute of Semiconductors and Microsystems, Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden 01187, Germany

Show Author Information

Graphical Abstract

Abstract

Infrared (IR) light photodetection based on two dimensional (2D) materials of proper bandgap has attracted increasing attention. However, the weak IR absorption in 2D materials, due to their ultrathin attribute and indirect bandgap in multilayer structures, degrades their performance when used as IR photodetectors. In this work, we utilize the fact that few-layer MoTe2 flake has a near-IR (NIR) bandgap and demonstrate a ~ 60-fold enhancement of NIR response by introducing a gold hollow nanorods on the surface. Such gold hollow nanorods have distinct absorption peak located also at the NIR regime, therefore induces strong resonance, benefitting NIR absorption in MoTe2, resulting in strong near-field enhancement. With the evidence from steady and transient state optical spectra, we confirm that the enhancement of NIR response originates only photon absorption, rather than electron transport at interfaces as observed in other heterostructures, therefore, precluding the requirement of high-quality interfaces for commercial applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2786_MOESM1_ESM.pdf (2.5 MB)

References

[1]
Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297-301.
[2]
Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780-793.
[3]
Long, M. S.; Liu, E. F.; Wang, P.; Gao, A. Y.; Xia, H.; Luo, W.; Wang, B. G.; Zeng, J. W.; Fu, Y. J.; Xu, K. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 2016, 16, 2254-2259.
[4]
Zhuge, F. W.; Zheng, Z.; Luo, P.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Nanostructured materials and architectures for advanced infrared photodetection. Adv. Mater. Technol. 2017, 2, 1700005.
[5]
Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.
[6]
Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/Graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.
[7]
Wei, X.; Yan, F. G.; Lv, Q. S.; Zhu, W. K.; Hu, C.; Patanè, A.; Wang, K. Y. Enhanced photoresponse in MoTe2 photodetectors with asymmetric graphene contacts. Adv. Opt. Mater. 2019, 7, 1900190.
[8]
Zhang, K.; Fang, X.; Wang, Y. L.; Wan, Y.; Song, Q. J.; Zhai, W. H.; Li, Y. P.; Ran, G. Z.; Ye, Y.; Dai, L. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure. ACS Appl. Mater. Interfaces 2017, 9, 5392-5398.
[9]
Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.
[10]
Zhou, X.; Hu, X. Z.; Jin, B.; Yu, J.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. Highly anisotropic GeSe nanosheets for phototransistors with ultrahigh photoresponsivity. Adv. Sci. 2018, 5, 1800478.
[11]
Ding, Y.; Zhou, N.; Gan, L.; Yan, X. X.; Wu, R. Z.; Abidi, I. H.; Waleed, A.; Pan, J.; Ou, X. W.; Zhang, Q. C. et al. Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors. Nano Energy 2018, 49, 200-208.
[12]
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[13]
Yoon, W. J.; Jung, K. Y.; Liu, J. W.; Duraisamy, T.; Revur, R.; Teixeira, F. L.; Sengupta, S.; Berger, P. R. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol. Energy Mat. Sol. Cells 2010, 94, 128-132.
[14]
Chou, C. H.; Chen, F. C. Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale 2014, 6, 8444-8458.
[15]
Sobhani, A.; Lauchner, A.; Najmaei, S.; Ayala-Orozco, C.; Wen, F. F.; Lou, J.; Halas, N. J. Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Appl. Phys. Lett. 2014, 104, 031112.
[16]
Bang, S.; Duong, N. T.; Lee, J.; Cho, Y. H.; Oh, H. M.; Kim, H.; Yun, S. J.; Park, C.; Kwon, M. K.; Kim, J. Y. et al. Augmented quantum yield of a 2D monolayer photodetector by surface plasmon coupling. Nano Lett. 2018, 18, 2316-2323.
[17]
McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 2005, 109, 11279-11285.
[18]
Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231-6236.
[19]
Yamamoto, M.; Wang, S. T.; Ni, M. Y.; Lin, Y. F.; Li, S. L.; Aikawa, S.; Jian, W. B.; Ueno, K.; Wakabayashi, K.; Tsukagoshi, K. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 2014, 8, 3895-3903.
[20]
Lezama, I. G.; Arora, A.; Ubaldini, A.; Barreteau, C.; Giannini, E.; Potemski, M.; Morpurgo, A. F. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 2015, 15, 2336-2342.
[21]
Cai, K.; Zhang, W. Y.; Zhang, J.; Li, H. Q.; Han, H. Y.; Zhai, T. Y. Design of gold hollow nanorods with controllable aspect ratio for multimodal imaging and combined chemo-photothermal therapy in the second near-infrared window. ACS Appl. Mater. Interfaces 2018, 10, 36703-36710.
[22]
Lee, S. Y.; Jeong, T. Y.; Jung, S.; Yee, K. J. Refractive index dispersion of hexagonal boron nitride in the visible and near-infrared. Phys. Status Solidi B 2018, 256, 1800417.
[23]
Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications. Adv. Mater. 2014, 26, 5274-5309.
[24]
Li, N.; Zhao, P. X.; Astruc, D. Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angew. Chem., Int. Ed. 2014, 53, 1756-1789.
[25]
Barnes, W. L. Particle plasmons: Why shape matters. Am. J. Phys. 2016, 84, 593-601.
[26]
Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.
[27]
Luong, D. H.; Lee, H. S.; Ghimire, G.; Lee, J.; Kim, H.; Yun, S. J.; An, G. H.; Lee, Y. H. Enhanced light-matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors. Small 2018, 14, 1802949.
[28]
Gong, X.; Tong, M. H.; Xia, Y. J.; Cai, W. Z.; Moon, J. S.; Cao, Y.; Yu, G.; Shieh, C. L.; Nilsson, B.; Heeger, A. J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665-1667.
[29]
Rahmati, B.; Hajzadeh, I.; Taheri, M.; Karimzadeh, R.; Mohajerzadeh, S.; Mohseni, S. Plasmonic improvement photoresponse of vertical-MoS2 nanostructure photodetector by Au nanoparticles. Appl. Surf. Sci. 2019, 490, 165-171.
[30]
Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456-3461.
[31]
Miao, J. S.; Hu, W. D.; Jing, Y. L.; Luo, W. J.; Liao, L.; Pan, A. L.; Wu, S. W.; Cheng, J. X.; Chen, X. S.; Lu, W. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small 2015, 11, 2392-2398.
[32]
Wang, G. C.; Li, L.; Fan, W. H.; Wang, R. Y.; Zhou, S. S.; Lü, J. T.; Gan, L.; Zhai, T. Y. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Adv. Funct. Mater. 2018, 28, 1800339.
[33]
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857-13870.
[34]
Schnepf, M. J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Forster, S.; Bals, S. et al. Nanorattles with tailored electric field enhancement. Nanoscale 2017, 9, 9376-9385.
[35]
Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009, 9, 1663-1667.
[36]
Zhang, H. Y.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. Direct assembly of large area nanoparticle arrays. ACS Nano 2018, 12, 7529-7537.
[37]
Jia, C. C.; Li, X. X.; Xin, N.; Gong, Y.; Guan, J. X.; Meng, L. A.; Meng, S.; Guo, X. F. Interface-engineered plasmonics in metal/semiconductor heterostructures. Adv. Energy Mater. 2016, 6, 1600431.
[38]
Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707-1710.
[39]
Jung, Y.; Choi, M. S.; Nipane, A.; Borah, A.; Kim, B.; Zangiabadi, A.; Taniguchi, T.; Watanabe, K.; Yoo, W. J.; Hone, J. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2019, 2, 187-194.
[40]
Ghimire, M. K.; Ji, H.; Gul, H. Z.; Yi, H.; Jiang, J. B.; Lim, S. C. Defect-affected photocurrent in MoTe2 FETs. ACS Appl. Mater. Interfaces 2019, 11, 10068-10073.
[41]
Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. Proc. Natl. Acad. Sci. USA 2012, 109, 9281-9286.
Nano Research
Pages 1636-1643
Cite this article:
You J, Yu Y, Cai K, et al. Enhancement of MoTe2 near-infrared absorption with gold hollow nanorods for photodetection. Nano Research, 2020, 13(6): 1636-1643. https://doi.org/10.1007/s12274-020-2786-9
Topics:

880

Views

22

Crossref

N/A

Web of Science

21

Scopus

3

CSCD

Altmetrics

Received: 19 February 2020
Revised: 30 March 2020
Accepted: 01 April 2020
Published: 11 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return