Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit

Hao LiuLin Chen()Hao ZhuQing-Qing Sun()Shi-Jin DingPeng ZhouDavid Wei Zhang
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Atomic layer deposition (ALD) can be used for wafer-scale synthesis of 2D materials. In this paper, a novel, reliable, secure, low-cost, and high-efficiency process for the fabrication of MoS2 is introduced and investigated. The resulting 2D materials show high carrier-mobility as well as excellent electrical uniformity. Using molybdenum pentachloride (MoCl5) and hexamethyldisilathiane (HMDST) as ALD precursors, thickness-controlled MoS2 films are uniformly deposited on a 50 mm sapphire and a 100 mm silica substrate. This is done with a high growth-rate (up to 0.90 Å/cycle). Large-scale top-gated FET arrays are fabricated using the films, with a room-temperature mobility of 0.56 cm2/(V·s) and a high on/off current ratio of 106. Excellent electrical uniformity is observed in the whole sapphire wafer. Additionally, logical circuits, including inverters, NAND, AND, NOR, and OR gates, are realized successfully with a high-k HfO2 dielectric layer. Our inverters exhibit a fast response frequency of 50 Hz and a DC-voltage gain of 4 at VDD = 4 V. These results indicate that the new method has the potential to synthesize high quality MoS2 films on a large-scale, with hypo-toxicity and enhanced efficiency, which can facilitate a broader range of applications in the future.

Electronic Supplementary Material

Download File(s)
12274_2020_2787_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[2]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[3]
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
[4]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[5]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[6]
Lin, K. I.; Chen, Y. J.; Wang, B. Y.; Cheng, Y. C.; Chen, C. H. Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS2 films. J. Appl. Phys. 2016, 119, 115703.
[7]
Wang, Z. W.; He, X.; Zhang, X. X.; Alshareef, H. N. Hybrid van der Waals p-n heterojunctions based on SnO and 2D MoS2. Adv. Mater. 2016, 28, 9133-9141.
[8]
Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421-425.
[9]
Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[10]
Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano. Lett. 2013, 13, 1852-1857.
[11]
Liu, H. F.; Wong, S. L.; Chi, D. Z. CVD growth of MoS2-based two-dimensional materials. Chem. Vapor Deposit. 2015, 21, 241-259.
[12]
Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Neto, A. H. C.; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano. Lett. 2014, 14, 1909-1913.
[13]
Yu, L.; El-Damak, D.; Ha, S.; Ling, X.; Lin, Y.; Zubair, A.; Zhang, Y.; Lee, Y. H.; Kong, J.; Chandrakasan, A. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, 2015, pp 32.3.1-32.3.4.
[14]
Venables, J. A.; Spiller, G. D. T. Nucleation and growth of thin films. In Surface Mobilities on Solid Materials. Binh, W. T., Ed.; Springer: Boston, 1983; pp 341-404.
[15]
Pyeon, J. J.; Kim, S. H.; Jeong, D. S.; Baek, S. H.; Kang, C. Y.; Kim, J. S.; Kim, S. K. Wafer-scale growth of MoS2 thin films by atomic layer deposition. Nanoscale 2016, 8, 10792-10798.
[16]
Tan, L. K.; Liu, B.; Teng, J. H.; Guo, S. F.; Low, H. Y.; Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584-10588.
[17]
Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.
[18]
Zhang, T. B.; Wang, Y.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhang, D. W. High performance few-layer MoS2 transistor arrays with wafer level homogeneity integrated by atomic layer deposition. 2D Mater. 2017, 5, 015028.
[19]
Shi, M. L.; Chen, L.; Zhang, T. B.; Xu, J.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 2017, 13, 1603157.
[20]
Jeon, W.; Cho, Y.; Jo, S.; Ahn, J. H.; Jeong, S. J. Wafer-scale synthesis of reliable high-mobility molybdenum disulfide thin films via inhibitor-utilizing atomic layer deposition. Adv. Mater. 2017, 29, 1703031.
[21]
Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[22]
Carmalt, C. J.; Dinnage, C. W.; Parkin, I. P.; Peters, E. S.; Molloy, K.; Colucci, M. A. The use of hexamethyldisilathiane for the synthesis of transition metal sulfides. Polyhedron 2003, 22, 1255-1262.
[23]
Cao, Q.; Dai, Y. W.; Xu, J.; Chen, L.; Zhu, H.; Sun, Q. Q.; Zhang, D. W. Realizing stable p-type transporting in two-dimensional WS2 films. ACS Appl. Mater. Interfaces 2017, 9, 18215-18221.
[24]
Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano. Lett. 2011, 11, 5111-5116.
[25]
Kim, Y.; Bark, H.; Ryu, G. H.; Lee, Z.; Lee, C. Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S. J. Phys.: Cond. Matter 2016, 28, 184002.
[26]
Wu, D. Z.; Zhang, Z. Y.; Lv, D. H.; Yin, G. L.; Peng, Z. J.; Jin, C. H. High mobility top gated field-effect transistors and integrated circuits based on chemical vapor deposition-derived monolayer MoS2. Mater. Express 2016, 6, 198-204.
[27]
Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179-184.
[28]
Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858-862.
[29]
Wachter, S.; Polyushkin, D. K.; Bethge, O.; Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.
[30]
Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[31]
Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.
[32]
Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954-959.
[33]
Yu, L. L.; El-Damak, D.; Radhakrishna, U.; Ling, X.; Zubair, A.; Lin, Y. X.; Zhang, Y. H.; Chuang, M. H.; Lee, Y. H.; Antoniadis, D. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano. Lett. 2016, 16, 6349-6356.
[34]
Wang, L.; Chen, L.; Wong, S. L.; Huang, X.; Liao, W. G.; Zhu, C. X.; Lim, Y. F.; Li, D. B.; Liu, X. K.; Chi, D. Z. et al. Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition. Adv. Electron. Mater. 2019, 5, 1900393.
[35]
Zhang, T. B.; Liu, H.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Fast-response inverter arrays built on wafer-scale MoS2 by atomic layer deposition. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900018.
Nano Research
Pages 1644-1650
Cite this article:
Liu H, Chen L, Zhu H, et al. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Research, 2020, 13(6): 1644-1650. https://doi.org/10.1007/s12274-020-2787-8
Topics:
Metrics & Citations  
Article History
Copyright
Return