AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oligolayered Ti3C2Tx MXene towards high performance lithium/ sodium storage

Xiaolan Song1,§Hui Wang1,§Shengming Jin1Miao Lv1Ying Zhang1Xiaodong Kong1Hongmei Xu1Ting Ma1Xinyuan Luo1Hengfeng Tan1Dong Hu1Chaoyong Deng2Xinghua Chang1( )Jianlong Xu3( )
Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Guangdong Zhiyuan New Material Co., LTD, Qingyuan 513055, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

§ Xiaolan Song and Hui Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

2D MXenes are highly attractive for achieving ultrafast and stable lithium/sodium storage due to their good electric conductivity and abundant redox active sites. While, effective strategies for scalable preparation of oligolayered MXenes are still under exploration. Herein, oligolayered Ti3C2Tx MXene is successfully obtained after conventional synthesis of multilayered Ti3C2 and subsequent delamination process via an organic solvent of tetramethyl-ammonium hydroxide (TMAOH). Comprehensive electrochemical study reveals that surface-controlled redox reaction dominated the charge storage behavior of oligolayered Ti3C2Tx with fast reaction kinetics. Impressively, the obtained oligolayered Ti3C2Tx exhibits excellent lithium/sodium storage performance, featured for a high specific capacity of 330 mAh·g-1 at 1.0 A·g-1 after 800 cycles for lithium storage and 280 mAh·g-1 at 0.5 A·g-1 after 500 cycles for sodium storage. Such impressive performance will advance the development of oligolayered Ti3C2Tx based materials for lithium/sodium storage and even broaden their application into energy storage.

Electronic Supplementary Material

Download File(s)
12274_2020_2789_MOESM1_ESM.pdf (2.9 MB)

References

[1]
Wang, G. P.; Zhang, L.; Zhang J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.
[2]
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279-289.
[3]
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
[4]
Xiong, D. B.; Li, X. F.; Bai, Z. M.; Lu, S. G. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419.
[5]
Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310-5336.
[6]
Trudeau, M. L. Advanced materials for energy storage. MRS Bull. 1999, 24, 23-26.
[7]
Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210-1211.
[8]
Li, L.; Wu, Z.; Yuan, S.; Zhang, X. B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101-2122.
[9]
Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4302.
[10]
Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042-2048.
[11]
Wang, Q. D.; Zhao, C. L.; Lu, Y. X.; Li, Y. M.; Zheng, Y. H.; Qi, Y. R.; Rong, X. H.; Jiang, L. W.; Qi, X. G.; Shao, Y. J. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.
[12]
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.
[13]
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[14]
Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[15]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[16]
Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.
[17]
Zhu, J. F. Modification and Electrochemical Performance of Two-Dimensional Ti3C2 (MXenes) Nanomaterial; Tsinghua University Press: Beijing, 2018.
[18]
Huang, L.; Ai, L. H.; Wang, M.; Jiang, J.; Wang, S. B. Hierarchical MoS2 nanosheets integrated Ti3C2 MXenes for electrocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2019, 44, 965-976.
[19]
Ren, C. E.; Hatzell, K. B.; Alhabeb, M.; Ling, Z.; Mahmoud, K. A.; Gogotsi, Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 2015, 6, 4026-4031.
[20]
Tang, Q.; Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909-16916.
[21]
Xu, S. K.; Wei, G. D.; Li, J. Z.; Ji, Y.; Klyui, N.; Izotov, V.; Han, W. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method. Chem. Eng. J. 2017, 317, 1026-1036.
[22]
Luo, J. M.; Fang, C.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Fang, R. Y.; Zhang, W. K.; Huang, H.; Gan, Y. P.; Xia, Y. et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A 2018, 6, 7794-7806.
[23]
Ma, K.; Jiang, H.; Hu, Y. J.; Li, C. Z. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1804306.
[24]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78-81.
[25]
Dall’Agnese, Y.; Lukatskaya, M. R.; Cook, K. M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014, 48, 118-122.
[26]
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lu, M. Q.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 2017, 38, 368-376.
[27]
Zhao, D. Y.; Zhao, R. Z.; Dong, S. H.; Miao, X. G.; Zhang, Z. W.; Wang, C. X.; Yin, L. W. Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 2019, 12, 2422-2432.
[28]
Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193-9200.
[29]
Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385-6394.
[30]
Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136-143.
[31]
Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633-7644.
[32]
Peng, J. H.; Chen, X. Z.; Ong, W. J.; Zhao, X. J.; Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: Insights into electro- and photocatalysis. Chem 2019, 5, 18-50.
[33]
Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.
[34]
Jiang, H. M.; Wang, Z. G.; Yang, Q.; Tan, L. X.; Dong, L. C.; Dong, M. D. Ultrathin Ti3C2Tx (MXene) nanosheet-wrapped NiSe2 octahedral crystal for enhanced supercapacitor performance and synergetic electrocatalytic water splitting. Nano-Micro Lett. 2019, 11, 31.
[35]
Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907-3911.
[36]
Ai, J. J.; Lei, Y. K.; Yang, S.; Lai, C. Y.; Xu, Q. J. SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries. Chem. Eng. J. 2019, 357, 150-158.
[37]
Wang, X. H.; Zhou, Y. C. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic. J. Mater. Chem. 2002, 12, 455-460.
[38]
Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491-2499.
[39]
Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Kim, S. J. Titanium carbide sheet based high performance wire type solid state supercapacitors. J. Mater. Chem. A 2017, 5, 5726-5736.
[40]
Cheng, R. F.; Hu, T.; Zhang, H.; Wang, C. M.; Hu, M. M.; Yang, J. X.; Cui, C.; Guang, T. J.; Li, C. J.; Shi, C. et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 2019, 123, 1099-1109.
[41]
Cai, K. J.; Zheng, Y.; Shen, P.; Chen, S. Y. TiCx-Ti2C nanocrystals and epitaxial graphene-based lamellae by pulsed laser ablation of bulk TiC in vacuum. CrystEngComm 2014, 16, 5466-5474.
[42]
Pan, H.; Huang, X. X.; Zhang, R.; Wang, D.; Chen, Y. T.; Duan, X. M.; Wen, G. W. Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 2019, 358, 1253-1261.
[43]
Rozmysłowska-Wojciechowska, A.; Wojciechowski, T.; Ziemkowska, W.; Chlubny, L.; Olszyna, A.; Jastrzębska, A. M. Surface interactions between 2D Ti3C2/Ti2C MXenes and lysozyme. Appl. Surf. Sci. 2019, 473, 409-418.
[44]
Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314-5323.
[45]
Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y. Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1-8.
[46]
Xie, Y.; Dall'Agnese, Y; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606-9615.
[47]
Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada, A. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016, 10, 3334-3341.
[48]
Sun, S. J.; Xie, Z. L.; Yan, Y. R.; Wu, S. P. Hybrid energy storage mechanisms for sulfur-decorated Ti3C2 MXene anode material for high-rate and long-life sodium-ion batteries. Chem. Eng. J. 2019, 366, 460-467.
[49]
Wang, B.; Wang, M. Y.; Liu, F. Y.; Zhang, Q.; Yao, S.; Liu, X. L.; Huang, F. Ti3C2: An ideal co-catalyst? Angew. Chem., Int. Ed. 2020, 59, 1914-1918.
[50]
Li, T. T.; Wang, B. W.; Ning, J.; Li, W.; Guo, G. N.; Han, D. D.; Xue, B.; Zou, J. X.; Wu, G. H.; Yang, Y. C. et al. Self-assembled nanoparticle supertubes as robust platform for revealing long-term, multiscale lithiation evolution. Matter 2019, 1, 976-987.
[51]
Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925-14931.
[52]
Conway, B. E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1-14.
[53]
Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 1. chronoamperometry on cvd films and nanoporous films. J. Phys. Chem. B 1997, 101, 7717.
[54]
Bard, A. J., Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. Wiley, New York: 2001.
[55]
Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882-1888.
[56]
Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 1936, 10, 10211-10219.
[57]
Zhu, J. F.; Tang, Y.; Yang, C. H.; Wang, F.; Cao, M. J. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 2016, 163, A785-A791.
[58]
Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 2016, 8, 18806-18814.
[59]
Lv, W. J.; Zhu, J. F.; Wang, F.; Fang, Y. Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite. J. Mater. Sci. Mater. Electron. 2018, 29, 4881-4887.
[60]
Kang, W. P.; Tang, Y. B.; Li, W. Y.; Yang, X.; Xue, H. T.; Yang, Q. D.; Lee, C. S. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale 2015, 7, 225-231.
Nano Research
Pages 1659-1667
Cite this article:
Song X, Wang H, Jin S, et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/ sodium storage. Nano Research, 2020, 13(6): 1659-1667. https://doi.org/10.1007/s12274-020-2789-6
Topics:

801

Views

93

Crossref

N/A

Web of Science

90

Scopus

9

CSCD

Altmetrics

Received: 02 January 2020
Revised: 26 March 2020
Accepted: 04 April 2020
Published: 28 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return