AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage

Gaurav Verma1Sanjay Kumar1,( )Harsh Vardhan1Junyu Ren1Zheng Niu1Tony Pham1,Lukasz Wojtas1Sydney Butikofer1,Jose C Echeverria Garcia1Yu-Sheng Chen2Brian Space1Shengqian Ma1( )
Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33637, USA
ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL 60439, USA

Present address: Department of Chemistry, Multani Mal Modi College, Patiala 147001, India

Present address: Department of Chemistry, Biochemistry, and Physics, The University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606-1490, USA

Present address: Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA

Show Author Information

Graphical Abstract

Abstract

Emerging as an outperformed class of metal-organic frameworks (MOFs), square-octahedron (soc) topology MOFs (soc-MOFs) feature superior properties of high porosity, large gas storage capacity, and excellent thermal/chemical stability. We report here an iron based soc-MOF, denoted as Fe-pbpta (H4pbpta = 4,4',4'',4'''-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid) possessing a very high Brunauer, Emmett and Teller (BET) surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g. The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions (35 bar and 298 K) and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar. Furthermore, Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.

Electronic Supplementary Material

Download File(s)
12274_2020_2794_MOESM1_ESM.pdf (1.6 MB)

References

[1]
IEA (2017), Energy Technology Perspectives 2017, IEA, Paris. https://www.iea.org/reports/energy-technology-perspectives-2017 (accessed Dec 20, 2019).
[2]
IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; V. Masson-Delmotte,; P. Zhai,; H. O. Pörtner,; D. Roberts,; J. Skea,; P. R. Shukla,; A. Pirani,; W. Moufouma-Okia,; C. Péan,; R. Pidcock, et al., Eds.; Intergovernmental Panel on Climate Change: 2018.
[3]
S. Chu,; Y. Cui,; N. Liu, The path towards sustainable energy. Nat. Mater. 2017, 16, 16-22.
[4]
Y. B. He,; W. Zhou,; G. D. Qian,; B. L. Chen, Methane storage in metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5657-5678.
[5]
B. Li,; H. M. Wen,; W. Zhou,; J. Q. Xu,; B. L. Chen, Porous metal-organic frameworks: Promising materials for methane storage. Chem 2016, 1, 557-580.
[6]
A. Kirchon,; L. Feng,; H. F. Drake,; E. A. Joseph,; H. C. Zhou, From fundamentals to applications: A toolbox for robust and multifunctional MOF materials. Chem. Soc. Rev. 2018, 47, 8611-8638.
[7]
Y. P. Song,; Q. Sun,; B. Aguila,; S. Q. Ma, Opportunities of covalent organic frameworks for advanced applications. Adv. Sci. 2019, 6, 1801410.
[8]
M. S. Lohse,; T. Bein, Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.
[9]
A. D. Burrows, The chemistry of metal-organic frameworks. Synthesis, characterization, and applications, 2 volumes. Edited by stefan kaskel. Angew. Chem., Int. Ed. 2017, 56, 1449.
[10]
O. M. Yaghi,; M. O’Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[11]
M. J. Kalmutzki,; N. Hanikel,; O. M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.
[12]
M. Eddaoudi,; J. Kim,; N. Rosi,; D. Vodak,; J. Wachter,; M. O’Keeffe,; O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
[13]
H. C. Zhou,; J. R. Long,; O. M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[14]
W. G. Lu,; Z. W. Wei,; Z. Y. Gu,; T. F. Liu,; J. Park,; J. Park,; J. Tian,; M. W. Zhang,; Q. Zhang,; T., III. Gentle, et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561-5593.
[15]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[16]
Y. Peng,; V. Krungleviciute,; I. Eryazici,; J. T. Hupp,; O. K. Farha,; T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc. 2013, 135, 11887-11894.
[17]
C. M. Simon,; J. Kim,; D. A. Gomez-Gualdron,; J. S. Camp,; Y. G. Chung,; R. L. Martin,; R. Mercado,; M. W. Deem,; D. Gunter,; M. Haranczyk, et al. The materials genome in action: Identifying the performance limits for methane storage. Energy Environ. Sci. 2015, 8, 1190-1199.
[18]
H. Li,; K. C. Wang,; Y. J. Sun,; C. T. Lollar,; J. L. Li,; H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108-121.
[19]
S. S. Y. Chui,; S. M. F. Lo,; J. P. H. Charmant,; A. G. Orpen,; I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150.
[20]
S. Q. Ma,; D. F. Sun,; J. M. Simmons,; C. D. Collier,; D. Q. Yuan,; H. C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 2008, 130, 1012-1016.
[21]
B. Li,; H. M. Wen,; H. L. Wang,; H. Wu,; M. Tyagi,; T. Yildirim,; W. Zhou,; B. L. Chen, A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 2014, 136, 6207-6210.
[22]
J. M. Lin,; C. T. He,; Y. Liu,; P. Q. Liao,; D. D. Zhou,; J. P. Zhang,; X. M. Chen, A metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane. Angew. Chem., Int. Ed. 2016, 55, 4674-4678.
[23]
F. Gándara,; H. Furukawa,; S. Lee,; O. M. Yaghi, High methane storage capacity in aluminum metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 5271-5274.
[24]
M. X. Zhang,; W. Zhou,; T. Pham,; K. A. Forrest,; W. L. Liu,; Y. B. He,; H. Wu,; T. Yildirim,; B. L. Chen,; B. Space, et al. Fine tuning of MOF-505 analogues to reduce low-pressure methane uptake and enhance methane working capacity. Angew. Chem., Int. Ed. 2017, 56, 11426-11430.
[25]
J. A. Mason,; J. Oktawiec,; M. K. Taylor,; M. R. Hudson,; J. Rodriguez,; J. E. Bachman,; M. I. Gonzalez,; A. Cervellino,; A. Guagliardi,; C. M. Brown, et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management. Nature 2015, 527, 357-361.
[26]
H. M. Wen,; B. Li,; L. B. Li,; R. B. Lin,; W. Zhou,; G. D. Qian,; B. L. Chen, A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities. Adv. Mater. 2018, 30, 1704792.
[27]
T. Kundu,; B. B. Shah,; L. Bolinois,; D. Zhao, Functionalization-induced breathing control in metal-organic frameworks for methane storage with high deliverable capacity. Chem. Mater. 2019, 31, 2842-2847.
[28]
Y. Belmabkhout,; R. S. Pillai,; D. Alezi,; O. Shekhah,; P. M. Bhatt,; Z. J. Chen,; K. Adil,; S. Vaesen,; G. De Weireld,; M. L. Pang, et al. Metal-organic frameworks to satisfy gas upgrading demands: Fine-tuning the soc-MOF platform for the operative removal of H2S. J. Mater. Chem. A 2017, 5, 3293-3303.
[29]
M. L. Pang,; A. J. Cairns,; Y. L. Liu,; Y. Belmabkhout,; H. C. Zeng,; M. Eddaoudi, Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. J. Am. Chem. Soc. 2013, 135, 10234-10237.
[30]
A. Mavrandonakis,; K. D. Vogiatzis,; A. D. Boese,; K. Fink,; T. Heine,; W. Klopper, Ab initio study of the adsorption of small molecules on metal-organic frameworks with oxo-centered trimetallic building units: The role of the undercoordinated metal ion. Inorg. Chem. 2015, 54, 8251-8263.
[31]
B. Li,; H. M. Wen,; H. L. Wang,; H. Wu,; T. Yildirim,; W. Zhou,; B. L. Chen, Porous metal-organic frameworks with Lewis basic nitrogen sites for high-capacity methane storage. Energy Environ. Sci. 2015, 8, 2504-2511.
[32]
D. Alezi,; Y. Belmabkhout,; M. Suyetin,; P. M. Bhatt,; Ł. J. Weseliński,; V. Solovyeva,; K. Adil,; I. Spanopoulos,; P. N. Trikalitis,; A. H. Emwas, et al. MOF crystal chemistry paving the way to gas storage needs: Aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 2015, 137, 13308-13318.
[33]
A. J. Cairns,; J. Eckert,; L. Wojtas,; M. Thommes,; D. Wallacher,; P. A. Georgiev,; P. M. Forster,; Y. Belmabkhout,; J. Ollivier,; M. Eddaoudi, Gaining insights on the H2-sorbent interactions: Robust soc-MOF platform as a case study. Chem. Mater. 2016, 28, 7353-7361.
[34]
B. Wang,; X. Zhang,; H. L. Huang,; Z. J. Zhang,; T. Yildirim,; W. Zhou,; S. C. Xiang,; B. L. Chen, A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res., in press, .
[35]
S. M. Towsif Abtab,; D. Alezi,; P. M. Bhatt,; A. Shkurenko,; Y. Belmabkhout,; H. Aggarwal,; Ł. J. Weseliński,; N. Alsadun,; U. Samin,; M. N. Hedhili, et al. Reticular chemistry in action: A hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 2018, 4, 94-105.
[36]
J. W. Zhang,; P. Qu,; M. C. Hu,; S. N. Li,; Y. C. Jiang,; Q. G. Zhai, Topology-guided design for Sc-soc-MOFs and their enhanced storage and separation for CO2 and C2-hydrocarbons. Inorg. Chem. 2019, 58, 16792-16799.
[37]
Q. G. Zhai,; X. H. Bu,; C. Y. Mao,; X. Zhao,; P. Y. Feng, Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 2524-2527.
[38]
Y. L. Liu,; J. F. Eubank,; A. J. Cairns,; J. Eckert,; V. C. Kravtsov,; R. Luebke,; M. Eddaoudi, Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogen storage. Angew. Chem., Int. Ed. 2007, 46, 3278-3283.
[39]
G. Verma,; S. Kumar,; T. Pham,; Z. Niu,; L. Wojtas,; J. A. Perman,; Y. S. Chen,; S. Q. Ma, Partially interpenetrated NbO topology metal-organic framework exhibiting selective gas adsorption. Cryst. Growth Des. 2017, 17, 2711-2717.
[40]
Z. Hulvey,; B. Vlaisavljevich,; J. A. Mason,; E. Tsivion,; T. P. Dougherty,; E. D. Bloch,; M. Head-Gordon,; B. Smit,; J. R. Long,; C. M. Brown, Critical factors driving the high volumetric uptake of methane in Cu3(btc)2. J. Am. Chem. Soc. 2015, 137, 10816-10825.
[41]
J. A. Mason,; M. Veenstra,; J. R. Long, Evaluating metal-organic frameworks for natural gas storage. Chem. Sci. 2014, 5, 32-51.
[42]
J. Moellmer,; E. B. Celer,; R. Luebke,; A. J. Cairns,; R. Staudt,; M. Eddaoudi,; M. Thommes, Insights on adsorption characterization of metal-organic frameworks: A benchmark study on the novel soc-MOF. Micropor. Mesopor. Mat. 2010, 129, 345-353.
[43]
M. L. Pang,; A. J. Cairns,; Y. L. Liu,; Y. Belmabkhout,; H. C. Zeng,; M. Eddaoudi, Highly monodisperse MIII-based soc-MOFs (M = In and Ga) with cubic and truncated cubic morphologies. J. Am. Chem. Soc. 2012, 134, 13176-13179.
[44]
I. Bratsos,; C. Tampaxis,; I. Spanopoulos,; N. Demitri,; G. Charalambopoulou,; D. Vourloumis,; T. A. Steriotis,; P. N. Trikalitis, Heterometallic In(III)-Pd(II) porous metal-organic framework with square-octahedron topology displaying high CO2 uptake and selectivity toward CH4 and N2. Inorg. Chem. 2018, 57, 7244-7251.
[45]
H. Y. Liu,; G. M. Gao,; F. L. Bao,; Y. H. Wei,; H. Y. Wang, Enhanced water stability and selective carbon dioxide adsorption of a soc-MOF with amide-functionalized linkers. Polyhedron 2019, 160, 207-212.
[46]
S. Yuan,; L. Feng,; K. C. Wang,; J. D. Pang,; M. Bosch,; C. Lollar,; Y. J. Sun,; J. S. Qin,; X. Y. Yang,; P. Zhang, et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.
[47]
O. K. Farha,; A. Özgür Yazaydın,; I. Eryazici,; C. D. Malliakas,; B. G. Hauser,; M. G. Kanatzidis,; S. T. Nguyen,; R. Q. Snurr,; J. T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944-948.
[48]
U. Stoeck,; S. Krause,; V. Bon,; I. Senkovska,; S. Kaskel, A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem. Commun. 2012, 48, 10841-10843.
[49]
I. Spanopoulos,; C. Tsangarakis,; E. Klontzas,; E. Tylianakis,; G. Froudakis,; K. Adil,; Y. Belmabkhout,; M. Eddaoudi,; P. N. Trikalitis, Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage. J. Am. Chem. Soc. 2016, 138, 1568-1574.
Nano Research
Pages 512-517
Cite this article:
Verma G, Kumar S, Vardhan H, et al. A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14(2): 512-517. https://doi.org/10.1007/s12274-020-2794-9
Topics:

816

Views

49

Crossref

N/A

Web of Science

47

Scopus

0

CSCD

Altmetrics

Received: 01 February 2020
Revised: 24 March 2020
Accepted: 02 April 2020
Published: 24 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return