AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization

Ximeng Liu1,2,§Gang Li3,§Alexey Lipatov3Tao Sun1,4Mohammad Mehdi Pour3Narayana R. Aluru1,4Joseph W. Lyding1,2( )Alexander Sinitskii3,5( )
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

§ Ximeng Liu and Gang Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Graphene nanoribbons (GNRs) attract a growing interest due to their tunable physical properties and promise for device applications. A variety of atomically precise GNRs have recently been synthesized by on-surface and solution approaches. While on-surface GNRs can be conveniently visualized by scanning tunneling microscopy (STM), and their electronic structure can be probed by scanning tunneling spectroscopy (STS), such characterization remains a great challenge for the solution-synthesized GNRs. Here, we report solution synthesis and detailed STM/STS characterization of atomically precise GNRs with a meandering shape that are structurally related to chevron GNRs but have a reduced energy band gap. The ribbons were synthesized by Ni0-mediated Yamamoto polymerization of specially designed molecular precursors using triflates as the leaving groups and oxidative cyclodehydrogenation of the resulting polymers using Scholl reaction. The ribbons were deposited onto III-V semiconducting InAs(110) substrates by a dry contact transfer technique. High-resolution STM/STS characterization not only confirmed the GNR geometry, but also revealed details of electronic structure including energy states, electronic band gap, as well as the spatial distribution of the local density of states. The experimental STS band gap of GNRs is about 2 eV, which is very close to 2.35 eV predicted by the density functional theory simulations with GW correction, indicating a weak screening effect of InAs(110) substrate. Furthermore, several aspects of GNR-InAs(110) substrate interactions were also probed and analyzed, including GNR tunable transparency, alignment to the substrate, and manipulations of GNR position by the STM tip. The weak interaction between the GNRs and the InAs(110) surface makes InAs(110) an ideal substrate for investigating the intrinsic properties of GNRs. Because of the reduced energy band gap of these ribbons, the GNR thin films exhibit appreciably high electrical conductivity and on/off ratios of about 10 in field-effect transistor measurements, suggesting their promise for device applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2797_MOESM1_ESM.pdf (5.1 MB)

References

[1]
Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954-17961.
[2]
Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.
[3]
Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748-2754.
[4]
Schwab, M. G.; Narita, A.; Hernandez, Y.; Balandina, T.; Mali, K. S.; De Feyter, S.; Feng, X. L.; Müllen, K. Structurally defined graphene nanoribbons with high lateral extension. J. Am. Chem. Soc. 2012, 134, 18169-18172.
[5]
Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Morton, M. D.; Berglund, E.; Kong, L. M.; Wilson, P. M.; Dowben, P. A.; Enders, A.; Sinitskii, A. Large-scale solution synthesis of narrow graphene nanoribbons. Nat. Commun. 2014, 5, 3189.
[6]
Huang, Y. J.; Mai, Y. Y.; Beser, U.; Teyssandier, J.; Velpula, G.; van Gorp, H.; Straasø, L. A.; Hansen, M. R.; Rizzo, D.; Casiraghi, C. et al. Poly(ethylene oxide) functionalized graphene nanoribbons with excellent solution processability. J. Am. Chem. Soc. 2016, 138, 10136-10139.
[7]
Mehdi Pour, M.; Lashkov, A.; Radocea, A.; Liu, X. M.; Sun, T.; Lipatov, A.; Korlacki, R. A.; Shekhirev, M.; Aluru, N. R.; Lyding, J. W. et al. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing. Nat. Commun. 2017, 8, 820.
[8]
Yang, X. Y.; Dou, X.; Rouhanipour, A.; Zhi, L. J.; Räder, H. J.; Müllen, K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4216-4217.
[9]
Yang, W. L.; Lucotti, A.; Tommasini, M.; Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. J. Am. Chem. Soc. 2016, 138, 9137-9144.
[10]
Li, G.; Yoon, K. Y.; Zhong, X. J.; Zhu, X. Y.; Dong, G. B. Efficient bottom-up preparation of graphene nanoribbons by mild suzuki- miyaura polymerization of simple triaryl monomers. Chem. —Eur. J. 2016, 22, 9116-9120.
[11]
Li, G.; Yoon, K. Y.; Zhong, X. J.; Wang, J. C.; Zhang, R.; Guest, J. R.; Wen, J. G.; Zhu, X. Y.; Dong, G. B. A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons. Nat. Commun. 2018, 9, 1687.
[12]
Kim, K. T.; Jung, J. W.; Jo, W. H. Synthesis of graphene nanoribbons with various widths and its application to thin-film transistor. Carbon 2013, 63, 202-209.
[13]
Daigle, M.; Miao, D. D.; Lucotti, A.; Tommasini, M.; Morin, J. F. Helically coiled graphene nanoribbons. Angew. Chem., Int. Ed. 2017, 56, 6213-6217.
[14]
Fogel, Y.; Zhi, L. J.; Rouhanipour, A.; Andrienko, D.; Räder, H. J.; Müllen, K. Graphitic nanoribbons with dibenzo[e, l]pyrene repeat units: Synthesis and self-assembly. Macromolecules 2009, 42, 6878-6884.
[15]
Narita, A.; Feng, X. L.; Hernandez, Y.; Jensen, S. A.; Bonn, M.; Yang, H. F.; Verzhbitskiy, I. A.; Casiraghi, C.; Hansen, M. R.; Koch, A. H. R. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 2014, 6, 126-132.
[16]
Narita, A.; Verzhbitskiy, I. A.; Frederickx, W.; Mali, K. S.; Jensen, S. A.; Hansen, M. R.; Bonn, M.; De Feyter, S.; Casiraghi, C.; Feng, X. L. et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. ACS Nano 2014, 8, 11622-11630.
[17]
Hu, Y. B.; Xie, P.; De Corato, M.; Ruini, A.; Zhao, S.; Meggendorfer, F.; Straasø, L. A.; Rondin, L.; Simon, P.; Li, J. et al. Bandgap engineering of graphene nanoribbons by control over structural distortion. J. Am. Chem. Soc. 2018, 140, 7803-7809.
[18]
Narita, A.; Wang, X. Y.; Feng, X. L.; Müllen, K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616-6643.
[19]
Shekhirev, M.; Sinitskii, A., Solution synthesis of atomically precise graphene nanoribbons. In Chemistry of Carbon Nanostructures. Müllen, K.; Feng, X., Eds.; De Gruyter: Berlin, 2017; pp 194-225.
[20]
Abbas, A. N.; Liu, G.; Narita, A.; Orosco, M.; Feng, X. L.; Müllen, K.; Zhou, C. W. Deposition, characterization, and thin-film-based chemical sensing of ultra-long chemically synthesized graphene nanoribbons. J. Am. Chem. Soc. 2014, 136, 7555-7558.
[21]
Gao, J.; Uribe-Romo, F. J.; Saathoff, J. D.; Arslan, H.; Crick, C. R.; Hein, S. J.; Itin, B.; Clancy, P.; Dichtel, W. R.; Loo, Y. L. Ambipolar transport in solution-synthesized graphene nanoribbons. ACS Nano 2016, 10, 4847-4856.
[22]
Shekhirev, M.; Vo, T. H.; Mehdi Pour, M.; Lipatov, A.; Munukutla, S.; Lyding, J. W.; Sinitskii, A. Interfacial self-assembly of atomically precise graphene nanoribbons into uniform thin films for electronics applications. ACS Appl. Mater. Interfaces 2017, 9, 693-700.
[23]
Zschieschang, U.; Klauk, H.; Müeller, I. B.; Strudwick, A. J.; Hintermann, T.; Schwab, M. G.; Narita, A.; Feng, X. L.; Müellen, K.; Weitz, R. T. Electrical characteristics of field-effect transistors based on chemically synthesized graphene nanoribbons. Adv. Electron. Mater. 2015, 1, 1400010.
[24]
Shekhirev, M.; Vo, T. H.; Kunkel, D. A.; Lipatov, A.; Enders, A.; Sinitskii, A. Aggregation of atomically precise graphene nanoribbons. RSC Adv. 2017, 7, 54491-54499.
[25]
Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L. Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 2015, 7, 12807-12811.
[26]
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470-473.
[27]
Vo, T. H.; Perera, U. G. E.; Shekhirev, M.; Mehdi Pour, M.; Kunkel, D. A.; Lu, H. D.; Gruverman, A.; Sutter, E.; Cotlet, M.; Nykypanchuk, D. et al. Nitrogen-doping induced self-assembly of graphene nanoribbon-based two-dimensional and three-dimensional metamaterials. Nano Lett. 2015, 15, 5770-5777.
[28]
Wang, S. D.; Wang, J. L. Quasiparticle energies and optical excitations in chevron-type graphene nanoribbon. J. Phys. Chem. C 2012, 116, 10193-10197.
[29]
Liang, L. B.; Meunier, V. Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects. Phys. Rev. B 2012, 86, 195404.
[30]
Radocea, A.; Sun, T.; Vo, T. H.; Sinitskii, A.; Aluru, N. R.; Lyding, J. W. Solution-synthesized chevron graphene nanoribbons exfoliated onto H:Si(100). Nano Lett. 2017, 17, 170-178.
[31]
Teeter, J. D.; Zahl, P.; Mehdi Pour, M.; Costa, P. S.; Enders, A.; Sinitskii, A. On-surface synthesis and spectroscopic characterization of laterally extended chevron graphene nanoribbons. ChemPhysChem 2019, 20, 2281-2285.
[32]
Huang, Y. J.; Xu, F. G.; Ganzer, L.; Camargo, F. V. A.; Nagahara, T.; Teyssandier, J.; van Gorp, H.; Basse, K.; Straasø, L. A.; Nagyte, V. et al. Intrinsic properties of single graphene nanoribbons in solution: Synthetic and spectroscopic studies. J. Am. Chem. Soc. 2018, 140, 10416-10420.
[33]
Huang, Y. J.; Dou, W. T.; Xu, F. G.; Ru, H. B.; Gong, Q. Y.; Wu, D. Q.; Yan, D. Y.; Tian, H.; He, X. P.; Mai, Y. Y. et al. Supramolecular nanostructures of structurally defined graphene nanoribbons in the aqueous phase. Angew. Chem., Int. Ed. 2018, 57, 3366-3371.
[34]
Ruffieux, P.; Cai, J. M.; Plumb, N. C.; Patthey, L.; Prezzi, D.; Ferretti, A.; Molinari, E.; Feng, X. L.; Müllen, K.; Pignedoli, C. A. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano 2012, 6, 6930-6935.
[35]
Llinas, J. P.; Fairbrother, A.; Borin Barin, G.; Shi, W.; Lee, K.; Wu, S.; Yong Choi, B.; Braganza, R.; Lear, J.; Kau, N. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 2017, 8, 633.
[36]
Chen, Y. C.; de Oteyza, D. G.; Pedramrazi, Z.; Chen, C.; Fischer, F. R.; Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 2013, 7, 6123-6128.
[37]
Talirz, L.; Söde, H.; Dumslaff, T.; Wang, S. Y.; Sanchez-Valencia, J. R.; Liu, J.; Shinde, P.; Pignedoli, C. A.; Liang, L. B.; Meunier, V. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 2017, 11, 1380-1388.
[38]
Nguyen, G. D.; Tsai, H. Z.; Omrani, A. A.; Marangoni, T.; Wu, M.; Rizzo, D. J.; Rodgers, G. F.; Cloke, R. R.; Durr, R. A.; Sakai, Y. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotechnol. 2017, 12, 1077-1082.
[39]
Deniz, O.; Sánchez-Sánchez, C.; Jaafar, R.; Kharche, N.; Liang, L.; Meunier, V.; Feng, X.; Müllen, K.; Fasel, R.; Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on au(111). Chem. Commun. 2018, 54, 1619-1622.
[40]
Shekhirev, M.; Zahl, P.; Sinitskii, A. Phenyl functionalization of atomically precise graphene nanoribbons for engineering inter-ribbon interactions and graphene nanopores. ACS Nano 2018, 12, 8662-8669.
[41]
Vo, T. H.; Shekhirev, M.; Kunkel, D. A.; Orange, F.; Guinel, M. J. F.; Enders, A.; Sinitskii, A. Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem. Commun. 2014, 50, 4172-4174.
[42]
Szamota-Leandersson, K. Electronic structure of clean and adsorbate-covered InAs surfaces. Ph.D. Dissertation, Royal Institute of Technology, Sweden, 2010.
[43]
Andersson, C. B. M.; Andersen, J. N.; Persson, P. E. S.; Karlsson, U. O. Surface electronic structure of InAs(110). Phys. Rev. B 1993, 47, 2427-2430.
[44]
Klijn, J.; Sacharow, L.; Meyer, C.; Blügel, S.; Morgenstern, M.; Wiesendanger, R. Stm measurements on the InAs(110) surface directly compared with surface electronic structure calculations. Phys. Rev. B 2003, 68, 205327.
[45]
Yelgel, C.; Srivastava, G. P.; Miwa, R. H. Ab initio investigation of the electronic properties of graphene on InAs(111)A. J. Phys. Condens. Matter 2012, 24, 485004.
[46]
Andrade, D. P.; Miwa, R. H.; Srivastava, G. P. Graphene and graphene nanoribbons on InAs(110) and Au/InAs(110) surfaces: An ab initio study. Phys. Rev. B 2011, 84, 165322.
[47]
He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W. Separation-dependent electronic transparency of monolayer graphene membranes on III-V semiconductor substrates. Nano Lett. 2010, 10, 3446-3452.
[48]
Ruppalt, L. B.; Lyding, J. W. Charge transfer between semiconducting carbon nanotubes and their doped GaAs(110) and InAs(110) substrates detected by scanning tunnelling spectroscopy. Nanotechnology 2007, 18, 215202.
[49]
Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805-813.
[50]
Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol. 2009, 4, 830-834.
[51]
Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; Schmidt, J.; Kesselman, E. et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 2010, 5, 406-411.
[52]
Lyding, J. W.; Skala, S.; Hubacek, J. S.; Brockenbrough, R.; Gammie, G. Variable-temperature scanning tunneling microscope. Rev. Sci. Instrum. 1988, 59, 1897-1902.
[53]
Ruppalt, L. B.; Lyding, J. W. Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy. Small 2007, 3, 280-284.
[54]
Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. M. Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes. ACS Nano 2010, 4, 5405-5413.
[55]
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.
[56]
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098-3100.
[57]
Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 1999, 17, 176-179.
[58]
Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745-2779.
[59]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[60]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[61]
Shishkin, M.; Kresse, G. Self-consistent GW calculations for semiconductors and insulators. Phys. Rev. B 2007, 75, 235102.
[62]
Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. Wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 2008, 178, 685-699.
Nano Research
Pages 1713-1722
Cite this article:
Liu X, Li G, Lipatov A, et al. Chevron-type graphene nanoribbons with a reduced energy band gap: Solution synthesis, scanning tunneling microscopy and electrical characterization. Nano Research, 2020, 13(6): 1713-1722. https://doi.org/10.1007/s12274-020-2797-6
Topics:

841

Views

16

Crossref

N/A

Web of Science

14

Scopus

2

CSCD

Altmetrics

Received: 12 January 2020
Revised: 26 March 2020
Accepted: 07 April 2020
Published: 28 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return