AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-organization of various "phase-separated" nanostructures in a single chemical vapor deposition

Jinmei Wang1,7,§Dongyue Xie2,§Zhen Li1,( )Xiaohang Zhang3Xing Sun4Amanda L. Coughlin1Thomas Ruch1Qiang Chen5Yaroslav Losovyj6Seunghun Lee3Heshan Yu3Haidong Zhou5Haiyan Wang4Jian Wang2Shixiong Zhang1,8( )
Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
Department of Chemistry, Indiana University, Bloomington, Indiana 47408, USA
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA

§ Jinmei Wang and Dongyue Xie contributed equally to this work.

Present address: Quantum Optoelectronics Research Team, RIKEN Center for Advanced Photonics, Saitama 351-0198, Japan

Show Author Information

Graphical Abstract

Abstract

Chemical vapor deposition (CVD) is one of the most versatile techniques for the controlled synthesis of functional nanomaterials. When multiple precursors are induced, the CVD process often gives rise to the growth of doped or alloy compounds. In this work, we demonstrate the self-assembly of a variety of 'phase-separated’ functional nanostructures from a single CVD in the presence of various precursors. In specific, with silicon substrate and powder of Mn and SnTe as precursors, we achieved self-organized nanostructures including Si/SiOx core-shell nanowire heterostructures both with and without embedded manganese silicide particles, Mn11Si19 nanowires, and SnTe nanoplates. The Si/SiOx core-shell nanowires embedded with manganese silicide particles were grown along the <111> direction of the crystalline Si via an Au-catalyzed vapor-liquid-solid process, in which the Si and Mn vapors were supplied from the heated silicon substrates and Mn powder, respectively. In contrast, direct vapor-solid deposition led to particle-free <110>-oriented Si/SiOx core-shell nanowires and <100>-oriented Mn11Si19 nanowires, a promising thermoelectric material. No Sn or Te impurities were detected in these nanostructures down to the experimental limit. Topological crystalline insulator SnTe nanoplates with dominant {100} and {111} facets were found to be free of Mn (and Si) impurities, although nanoparticles and nanowires containing Mn were found in the vicinity of the nanoplates. While multiple-channel transport was observed in the SnTe nanoplates, it may not be related to the topological surface states due to surface oxidation. Finally, we carried out thermodynamic analysis and density functional theory calculations to understand the 'phase-separation’ phenomenon and further discuss general approaches to grow phase-pure samples when the precursors contain residual impurities.

Electronic Supplementary Material

Download File(s)
12274_2020_2798_MOESM1_ESM.pdf (6 MB)

References

[1]
Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 2003, 28, 486-491.
[2]
Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.
[3]
Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.
[4]
Cui, Y.; Duan, X. F.; Hu, J. T.; Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 2000, 104, 5213-5216.
[5]
Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.
[6]
Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082-1087.
[7]
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
[8]
Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard III, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; Singapore: World Scientific, 2010; pp 116-119.
[9]
Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163-167.
[10]
Kang, M.; Yuwen, Y.; Hu, W. C.; Yun, S.; Mahalingam, K.; Jiang, B.; Eyink, K.; Poutrina, E.; Richardson, K.; Mayer, T. S. Self-organized freestanding one-dimensional Au nanoparticle arrays. ACS Nano. 2017, 11, 5844-5852.
[11]
Park, G. S.; Kwon, H.; Lee, E. K.; Kim, S. K.; Lee, J. H.; Li, X. S.; Chung, J. G.; Heo, S.; Song, I. Y.; Lee, J. H. et al. Fabrication of surface plasmon-coupled Si nanodots in Au-embedded silicon oxide nanowires. Adv. Mater. 2010, 22, 2421-2425.
[12]
Pescaglini, A.; Iacopino, D. Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J. Mater. Chem. C 2015, 3, 11785-11800.
[13]
Hu, M. S.; Chen, H. L.; Shen, C. H.; Hong, L. S.; Huang, B. R.; Chen, K. H.; Chen, L. C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102-106.
[14]
Lin, X.; Li, S. H.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. Constructing film composites of silicon nanowires@CdS quantum dot arrays with ameliorated photocatalytic performance. New J. Chem. 2018, 42, 14096-14103.
[15]
Agarwal, D.; Aspetti, C. O.; Cargnello, M.; Ren, M. L.; Yoo, J.; Murray, C. B.; Agarwal, R. Engineering localized surface plasmon interactions in gold by silicon nanowire for enhanced heating and photocatalysis. Nano Lett. 2017, 17, 1839-1845.
[16]
Higgins, J. M.; Schmitt, A. L.; Guzei, I. A.; Jin, S. Higher manganese silicide nanowires of nowotny chimney ladder phase. J. Am. Chem. Soc. 2008, 130, 16086-16094.
[17]
Girard, S. N.; Chen, X.; Meng, F.; Pokhrel, A.; Zhou, J. S.; Shi, L.; Jin, S. Thermoelectric properties of undoped high purity higher manganese silicides grown by chemical vapor transport. Chem. Mater. 2014, 26, 5097-5104.
[18]
Pokhrel, A.; Degregorio, Z. P.; Higgins, J. M.; Girard, S. N.; Jin, S. Vapor phase conversion synthesis of higher manganese silicide (MnSi1.75) nanowire arrays for thermoelectric applications. Chem. Mater. 2013, 25, 632-638.
[19]
Higgins, J. M.; Ding, R. H.; DeGrave, J. P.; Jin, S. Signature of helimagnetic ordering in single-crystal MnSi nanowires. Nano Lett. 2010, 10, 1605-1610.
[20]
Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.
[21]
Hsieh, T. H.; Lin, H.; Liu, J. W.; Duan, W. H.; Bansil, A.; Fu, L. Topological crystalline insulators in the SnTe material class. Nat. Commun. 2012, 3, 982.
[22]
Tanaka, Y.; Ren, Z.; Sato, T.; Nakayama, K.; Souma, S.; Takahashi, T.; Segawa, K.; Ando, Y. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 2012, 8, 800-803.
[23]
Dziawa, P.; Kowalski, B. J.; Dybko, K.; Buczko, R.; Szczerbakow, A.; Szot, M.; Łusakowska, E.; Balasubramanian, T.; Wojek, B. M.; Berntsen, M. H. et al. Topological crystalline insulator states in Pb1-xSnxSe. Nat. Mater. 2012, 11, 1023-1027.
[24]
Okada, Y.; Serbyn, M.; Lin, H.; Walkup, D.; Zhou, W. W.; Dhital, C.; Neupane, M.; Xu, S. Y.; Wang, Y. J.; Sankar, R. et al. Observation of Dirac Node Formation and Mass Acquisition in a topological crystalline insulator. Science 2013, 341, 1496-1499.
[25]
Xu, S. Y.; Liu, C.; Alidoust, N.; Neupane, M.; Qian, D.; Belopolski, I.; Denlinger, J. D.; Wang, Y. J.; Lin, H.; Wray, L. A. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1-xSnxTe. Nat. Commun. 2012, 3, 1192.
[26]
Littlewood, P. B.; Mihaila, B.; Schulze, R. K.; Safarik, D. J.; Gubernatis, J. E.; Bostwick, A.; Rotenberg, E.; Opeil, C. P.; Durakiewicz, T.; Smith, J. L. et al. Band structure of SnTe studied by photoemission spectroscopy. Phys. Rev. Lett. 2010, 105, 086404.
[27]
Li, Z.; Shao, S.; Li, N.; McCall, K.; Wang, J.; Zhang, S. X. Single crystalline nanostructures of topological crystalline insulator SnTe with distinct facets and morphologies. Nano Lett. 2013, 13, 5443-5448.
[28]
Wang, Q. S.; Cai, K. M.; Li, J.; Huang, Y.; Wang, Z. X.; Xu, K.; Wang, F.; Zhan, X. Y.; Wang, F. M.; Wang, K. Y. et al. Rational design of ultralarge Pb1-xSnxTe nanoplates for exploring crystalline symmetry-protected topological transport. Adv. Mater. 2016, 28, 617-623.
[29]
Xu, E. Z.; Li, Z.; Acosta, J. A.; Li, N.; Swartzentruber, B.; Zheng, S. J.; Sinitsyn, N.; Htoon, H.; Wang, J.; Zhang, S. X. Enhanced thermoelectric properties of topological crystalline insulator PbSnTe nanowires grown by vapor transport. Nano Res. 2016, 9, 820-830.
[30]
Zou, Y. C.; Chen, Z. G.; Kong, F. T.; Lin, J.; Drennan, J.; Cho, K.; Wang, Z. C.; Zou, J. Planar vacancies in Sn1-xBixTe nanoribbons. ACS Nano. 2016, 10, 5507-5515.
[31]
Saghir, M.; Sanchez, A. M.; Hindmarsh, S. A.; York, S. J.; Balakrishnan, G. Nanomaterials of the topological crystalline insulators, Pb1-xSnxTe and Pb1-xSnxSe. Cryst. Growth Des. 2015, 15, 5202-5206.
[32]
Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; Xu, K.; He, J. Topological surface transport properties of single-crystalline SnTe nanowire. Nano Lett. 2013, 13, 5344-5349.
[33]
Wei, F.; Liu, C. W.; Li, D.; Wang, C. Y.; Zhang, H. R.; Sun, J. R.; Gao, X. P. A.; Ma, S.; Zhang, Z. D. Broken mirror symmetry tuned topological transport in PbTe/SnTe heterostructures. Phys. Rev. B 2018, 98, 161301.
[34]
Liu, C. W.; Wei, F.; Premasiri, K.; Liu, S. H.; Ma, S.; Zhang, Z. D.; Gao, X. P. A. Non-Drude magneto-transport behavior in a topological crystalline insulator/band insulator heterostructure. Nano Lett. 2018, 18, 6538-6543.
[35]
Shen, J.; Jung, Y.; Disa, A. S.; Walker, F. J.; Ahn, C. H.; Cha, J. J. Synthesis of SnTe nanoplates with {100} and {111} surfaces. Nano Lett. 2014, 14, 4183-4188.
[36]
Saghir, M.; Lees, M. R.; York, S. J.; Balakrishnan, G. Synthesis and characterization of nanomaterials of the topological crystalline insulator SnTe. Cryst. Growth Des. 2014, 14, 2009-2013.
[37]
Safdar, M.; Wang, Q. S.; Mirza, M.; Wang, Z. X.; He, J. Crystal shape engineering of topological crystalline insulator SnTe microcrystals and nanowires with huge thermal activation energy gap. Cryst. Growth Des. 2014, 14, 2502-2509.
[38]
Zou, Y. C.; Chen, Z. G.; Lin, J.; Zhou, X. H.; Lu, W.; Drennan, J.; Zou, J. Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Res. 2015, 8, 3011-3019.
[39]
Qian, X. F.; Fu, L.; Li, J. Topological crystalline insulator nanomembrane with strain-tunable band gap. Nano Res. 2015, 8, 967-979.
[40]
Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.
[41]
Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 2001, 78, 2214-2216.
[42]
Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457-460.
[43]
Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vac. Sci. Technol. B 1997, 15, 554-557.
[44]
Allen, J. E.; Hemesath, E. R.; Perea, D. E.; Lensch-Falk, J. L.; Li, Z. Y.; Yin, F.; Gass, M. H.; Wang, P.; Bleloch, A. L.; Palmer, R. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 2008, 3, 168-173.
[45]
Schmidt, V.; Wittemann, J. V.; Senz, S.; Gösele, U. Silicon nanowires: A review on aspects of their growth and their electrical properties. Adv. Mater. 2009, 21, 2681-2702.
[46]
Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304-1307.
[47]
Duan, X.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298-302.
[48]
Li, Z.; Yang, W. C.; Losovyj, Y.; Chen, J.; Xu, E. Z.; Liu, H. M.; Werbianskyj, M.; Fertig, H. A.; Ye, X. C.; Zhang, S. X. Large-size niobium disulfide nanoflakes down to bilayers grown by sulfurization. Nano Res. 2018, 11, 5978-5988.
[49]
Li, Z.; Xu, E. Z.; Losovyj, Y.; Li, N.; Chen, A. P.; Swartzentruber, B.; Sinitsyn, N.; Yoo, J.; Jia, Q. X.; Zhang, S. X. Surface oxidation and thermoelectric properties of indium-doped tin telluride nanowires. Nanoscale 2017, 9, 13014-13024.
[50]
Yang, W. C.; Xie, Y. T.; Sun, X.; Zhang, X. H.; Park, K.; Xue, S. C.; Li, Y. L.; Tao, C. G.; Jia, Q. X.; Losovyj, Y. et al. Stoichiometry control and electronic and transport properties of pyrochlore Bi2Ir2O7 thin films. Phys. Rev. Mater. 2018, 2, 114206.
[51]
Yang, W. C.; Coughlin, A. L.; Webster, L.; Ye, G. H.; Lopez, K.; Fertig, H. A.; He, R.; Yan, J. A.; Zhang, S. X. Highly tunable Raman scattering and transport in layered magnetic Cr2S3 nanoplates grown by sulfurization. 2D Mater. 2019, 6, 035029.
[52]
Zhang, R. Q.; Lifshitz, Y.; Lee, S. T. Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 2003, 15, 635-640.
[53]
Fardy, M.; Hochbaum, A. I.; Goldberger, J.; Zhang, M. M.; Yang, P. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 2007, 19, 3047-3051.
[54]
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
[55]
Lee, S. T.; Zhang, Y. F.; Wang, N.; Tang, Y. H.; Bello, I.; Lee, C. S.; Chung, Y. W. Semiconductor nanowires from oxides. J. Mater. Res. 1999, 14, 4503-4507.
[56]
Shi, W. S.; Peng, H. Y.; Zheng, Y. F.; Wang, N.; Shang, N. G.; Pan, Z. W.; Lee, C. S.; Lee, S. T. Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 2000, 12, 1343-1345.
[57]
Shi, W. S.; Peng, H. Y.; Wang, N.; Li, C. P.; Xu, L.; Lee, C. S.; Kalish, R.; Lee, S. T. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc. 2001, 123, 11095-11096.
[58]
Lide, D. R. Handbook of Chemistry and Physics; 84th ed. Florida: CRC Press, 2003.
[59]
Deringer, V. L.; Dronskowski, R. Stability of pristine and defective SnTe surfaces from first principles. ChemPhysChem. 2013, 14, 3108-3111.
[60]
Sugai, S.; Murase, K.; Katayama, S.; Takaoka, S.; Nishi, S.; Kawamura, H. Carrier density dependence of soft TO-phonon in SnTe by Raman scattering. Solid State Commun. 1977, 24, 407-409.
[61]
An, C. H.; Tang, K. B.; Hai, B.; Shen, G. Z.; Wang, C. R.; Qian, Y. T. Solution-phase synthesis of monodispersed SnTe nanocrystallites at room temperature. Inorg. Chem. Commun. 2003, 6, 181-184.
[62]
Acharya, S.; Pandey, J.; Soni, A. Soft phonon modes driven reduced thermal conductivity in self-compensated Sn1.03Te with Mn doping. Appl. Phys. Lett. 2016, 109, 133904.
[63]
Berchenko, N.; Vitchev, R.; Trzyna, M.; Wojnarowska-Nowak, R.; Szczerbakow, A.; Badyla, A.; Cebulski, J.; Story, T. Surface oxidation of SnTe topological crystalline insulator. Appl. Surf. Sci. 2018, 452, 134-140.
[64]
Neudachina, V. S.; Shatalova, T. B.; Shtanov, V. I.; Yashina, L. V.; Zyubina, T. S.; Tamm, M. E.; Kobeleva, S. P. XPS study of SnTe(100) oxidation by molecular oxygen. Surf. Sci. 2005, 584, 77-82.
[65]
Mandale, A. B.; Badrinarayanan, S. X-ray photoelectron spectroscopic studies of the semimagnetic semiconductor system Pb1-xMnxTe. J. Electron Spectrosc. Relat. Phenomena 1990, 53, 87-95.
[66]
Kobayashi, K. L.; Kato, Y.; Katayama, Y.; Komatsubara, K. F. Carrier-concentration-dependent phase transition in SnTe. Phys. Rev. Lett. 1976, 37, 772-774.
[67]
Brebrick, R. F. Deviations from stoichiometry and electrical properties in SnTe. J. Phys. Chem. Solids 1963, 24, 27-36.
[68]
Muldawer, L. New studies of the low temperature transformation in SnTe. J. Nonmetals. 1973, 1, 177-182.
[69]
Brillson, L. J.; Burstein, E.; Muldawer, L. Raman observation of the ferroelectric phase transition in SnTe. Phys. Rev. B 1974, 9, 1547-1551.
[70]
Inoue, M.; Ishii, K.; Yagi, H. Ferromagnetic ordering in Mn-doped SnTe crystals. J. Phys. Soc. Japan 1977, 43, 903-906.
[71]
Reja, S.; Fertig, H. A.; Brey, L.; Zhang, S. X. Surface magnetism in topological crystalline insulators. Phys. Rev. B 2017, 96, 201111.
[72]
Liu, J. W.; Fang, C.; Fu, L. Tunable Weyl fermions and Fermi arcs in magnetized topological crystalline insulators. Chin. Phys. B 2019, 28, 047301.
[73]
Chi, H.; Tan, G. J.; Kanatzidis, M. G.; Li, Q.; Uher, C. A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride. Appl. Phys. Lett. 2016, 108, 182101.
[74]
Inoue, M.; Tanabe, M.; Yagi, H.; Tatsukawa, T. Transport properties of SnTe-MnTe system: Anomalous hall effect. J. Phys. Soc. Japan 1979, 47, 1879-1886.
[75]
Inoue, M.; Yagi, H.; Ishii, K.; Tatsukawa, T. Electrical resistivity of Mn-doped SnTe crystals at low temperature. J. Low Temp. Phys. 1976, 23, 785-790.
[76]
Taskin, A. A.; Yang, F.; Sasaki, S.; Segawa, K.; Ando, Y. Topological surface transport in epitaxial SnTe thin films grown on Bi2Te3. Phys. Rev. B 2014, 89, 121302.
[77]
Siol, S.; Holder, A.; Ortiz, B. R.; Parilla, P. A.; Toberer, E.; Lany, S.; Zakutayev, A. Solubility limits in quaternary SnTe-based alloys. RSC Adv. 2017, 7, 24747-24753.
[78]
Van de Walle, C. G.; Neugebauer, J. First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 2004, 95, 3851-3879.
[79]
Wang, N.; West, D.; Liu, J. W.; Li, J.; Yan, Q. M.; Gu, B. L.; Zhang, S. B.; Duan, W. H. Microscopic origin of the p-type conductivity of the topological crystalline insulator SnTe and the effect of Pb alloying. Phys. Rev. B 2014, 89, 045142.
Nano Research
Pages 1723-1732
Cite this article:
Wang J, Xie D, Li Z, et al. Self-organization of various "phase-separated" nanostructures in a single chemical vapor deposition. Nano Research, 2020, 13(6): 1723-1732. https://doi.org/10.1007/s12274-020-2798-5
Topics:

792

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 06 February 2020
Revised: 27 March 2020
Accepted: 07 April 2020
Published: 02 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return