Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The synergistic therapy of chemotherapy and photothermal therapy (PTT) has been reported as a promising antitumor strategy. To achieve effective combination therapy, developing more suitable candidate nanomaterials with optimal photothermal property and high chemical drug loading capacity is very necessary. Herein, a bimetallic PtPd nanoparticle was synthesized with the merits of excellent photothermal effect and mesoporous structure for doxorubicin (DOX) loading. We further designed PtPd-ethylene glycol (PEG)-folic acid (FA)-doxorubicin (DOX) nanoparticle for chemo-photothermal therapy of MCF-7 tumor with folic acid engineering to achieve active targeting. Moreover, excellent photoacoustic (PA) imaging of PtPd-PEG-FA-DOX nanoparticles facilitated the precise in vivo tracking and further evaluation of nanoparticles’ targeting effect. The in vitro and in vivo results both demonstrated PtPd-PEG-FA-DOX nanoparticles serve as a safe and promising system for effective treatment of MCF-7 tumor.