AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics

Jie Zhao1,2,§Lijun Shen3,4,§Fang Liu1,2Pan Zhao3,5Qi Huang1,2Hua Han3,4Lianmao Peng1,2Xuelei Liang1,2( )
Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Automation, Harbin University of Science and Technology, Harbin 150080, China

§ Jie Zhao and Lijun Shen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Large area, highly uniform, and density controllable carbon nanotube (CNT) films, either well-aligned or random network, are required for practical application of CNT-based electronics. Mass production methods for such CNT films and corresponding quality metrology, which are critical for pushing the CNT-based transistor technology to manufacturing, should be developed in advance. Much progress has been made on fabrication of CNT films; however, there still lacks a metrology for thoroughly quantifying their quality until now. In this paper, through comparing study of CNT films fabricated by dip-coating (DC) and direct deposition (DD) methods, local anisotropy in the film is revealed to impact the performance uniformity of devices so fabricated in a spatial scale dependent manner. The anisotropy effect should be taken into account for the quality characterization of CNT films, which was not noticed in previous studies. Based on these findings, we propose a four-parameter metrology to quantify the overall quality of the CNT films, which includes the local tube density (DL), global density uniformity (Cv), local degree of order (OL), and the relative tube proportion in a certain orientation (Pθ) at a location. The four-parameter characterization and corresponding device performance confirm DC films are superior to DD films for practical application. The four-parameter metrology is not only powerful for overall quality evaluation of CNT films, but also able to predict the fluctuation of devices’ performance. Therefore, this material metrology is important for devices and circuits design and valuable for pushing the CNT-based transistor technology forward.

Electronic Supplementary Material

Download File(s)
12274_2020_2801_MOESM1_ESM.pdf (6.8 MB)

References

[1]
Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.
[2]
Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730-8745.
[3]
Che, Y. C.; Chen, H. T.; Gui, H.; Liu, J.; Liu, B. L.; Zhou, C. W. Review of carbon nanotube nanoelectronics and macroelectronics. Semicond. Sci. Technol .2014, 29, 073001.
[4]
Patil, N.; Deng, J.; Mitra, S.; Wong, H. S. P. Circuit-level performance benchmarking and scalability analysis of carbon nanotube transistor circuits. IEEE Trans. Nanotechnol .2009, 8, 37-45.
[5]
Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv .2016, 2, e1601240.
[6]
Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.
[7]
Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett .2009, 9, 4285-4291.
[8]
Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett .2012, 12, 1527-1533.
[9]
Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Yan, Q. P.; Zhang, H.; Liang, X. L.; Peng, L. M. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors. Nanoscale 2016, 8, 9988-9996.
[10]
Xia, J. Y.; Zhao, J.; Meng, H.; Huang, Q.; Dong, G. D.; Zhang, H.; Liu, F.; Mao, D. F.; Liang, X. L.; Peng, L. M. Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale 2018, 10, 4202-4208.
[11]
Liang, X. L.; Xia, J. Y.; Dong, G. D.; Tian, B. Y.; Peng, L. M. Carbon nanotube thin film transistors for flat panel display application. Top. Curr. Chem .2016, 374, 80.
[12]
Cao, Y.; Cong, S.; Cao, X.; Wu, F. Q.; Liu, Q. Z.; Amer, M. R.; Zhou, C. W. Review of electronics based on single-walled carbon nanotubes. Top. Curr. Chem .2017, 375, 75.
[13]
Qiu, S.; Wu, K. J.; Gao, B.; Li, L. Q.; Jin, H. H.; Li, Q. W. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv. Mater .2019, 31, e1800750.
[14]
Wang, H. L.; Bao, Z. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737-758.
[15]
Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci .2017, 8, 7292-7305.
[16]
Dong, G. D.; Zhao, J.; Shen, L. J.; Xia, J. Y.; Meng, H.; Yu, W. H.; Huang, Q.; Han, H.; Liang, X. L.; Peng, L. M. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors. Nano Res .2018, 11, 4356-4367.
[17]
Tian, B. Y.; Liang, X. L.; Yan, Q. P.; Zhang, H.; Xia, J. Y.; Dong, G. D.; Peng, L. M.; Xie, S. S. Wafer scale fabrication of carbon nanotube thin film transistors with high yield. J. Appl. Phys .2016, 120, 034501.
[18]
Shastry, T. A.; Seo, J. W. T.; Lopez, J. J.; Arnold, H. N.; Kelter, J. Z.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small 2013, 9, 45-51.
[19]
Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2014, 30, 3460-3466.
[20]
Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J. Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc .2007, 129, 4890-4891.
[21]
Liyanage, L. S.; Lee, H.; Patil, N.; Park, S.; Mitra, S.; Bao, Z.; Wong, H. S. P. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 2012, 6, 451-458.
[22]
Jinkins, K. R.; Chan, J.; Brady, G. J.; Gronski, K. K.; Gopalan, P.; Evensen, H. T.; Berson, A.; Arnold, M. S. Nanotube alignment mechanism in floating evaporative self-assembly. Langmuir 2017, 33, 13407-13414.
[23]
Cao, Q.; Han, S. J.; Penumatcha, A. V.; Frank, M. M.; Tulevski, G. S.; Tersoff, J.; Haensch, W. E. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. ACS Nano 2015, 9, 1936-1944.
[24]
Zhao, C. Y.; Zhong, D. L.; Han, J.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Exploring the performance limit of carbon nanotube network film field-effect transistors for digital integrated circuit applications. Adv. Funct. Mater .2019, 29, 1808574.
[25]
Gu, J. T.; Han, J.; Liu, D.; Yu, X. Q.; Kang, L. X.; Qiu, S.; Jin, H. H.; Li, H. B.; Li, Q. W.; Zhang, J. Solution-processable high-purity semiconducting SWCNTs for large-area fabrication of high-performance thin-film transistors. Small 2016, 12, 4993-4999.
[26]
Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol .2007, 2, 640-646.
[27]
Brinker, C. J. Dip coating. In Chemical Solution Deposition of Functional Oxide Thin Films. Schneller, T.; Waser, R.; Kosec, M.; Payne, D., Eds.; Springer: Vienna, 2013; pp 233-261.
[28]
Tang, X. M.; Yan, X. Dip-coating for fibrous materials: Mechanism, methods and applications. J. Sol-Gel Sci. Technol .2017, 81, 378-404.
[29]
Huang, Q.; Xia, J. Y.; Zhao, J.; Dong, G. D.; Liu, F.; Meng, H.; Liang, X. L. Ultraviolet/ozone and oxygen plasma treatments for improving the contact of carbon nanotube thin film transistors. Sci. Bull .2018, 63, 802-806.
[30]
Peng, L. M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433-442.
[31]
Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull .2006, 31, 466-470.
[32]
Ding, J. F.; Li, Z.; Lefebvre, J.; Du, X. M.; Malenfant, P. R. L. Mechanistic consideration of ph effect on the enrichment of semiconducting SWCNTs by conjugated polymer extraction. J. Phys. Chem. C 2016, 120, 21946-21954.
[33]
Opatkiewicz, J. P.; LeMieux, M. C.; Bao, Z. Influence of electrostatic interactions on spin-assembled single-walled carbon nanotube networks on amine-functionalized surfaces. ACS Nano 2010, 4, 1167-1177.
Nano Research
Pages 1749-1755
Cite this article:
Zhao J, Shen L, Liu F, et al. Quality metrology of carbon nanotube thin films and its application for carbon nanotube-based electronics. Nano Research, 2020, 13(6): 1749-1755. https://doi.org/10.1007/s12274-020-2801-1
Topics:

840

Views

17

Crossref

N/A

Web of Science

18

Scopus

3

CSCD

Altmetrics

Received: 20 February 2020
Revised: 27 March 2020
Accepted: 10 April 2020
Published: 15 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return