Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

A unified electrical model based on experimental data to describe electrical transport in carbon nanotube-based materials

Yoann Dini1Jérôme Faure-Vincent2()Jean Dijon1
Univ. Grenoble-Alpes, CEA, LITEN, DTNM, F-38000 Grenoble, France
Univ. Grenoble-Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Understanding the electrical transport in carbon nanotube (CNT) materials is one key to reach very high electrical conductivities. All CNT material resistivity (ρ (T)) as function of the temperature are fully apprehended by their reduced activation energy W(T)=dln(ρ)dln(T) curves. Up to now, no model accurately fits W(T) curves, thus preventing from precisely describing the CNT material electrical transport. We present a new electrical transport model that perfectly fits all W(T) curves found in the literature and in our own data. CNT material resistivities are modeled by ρ(T)=ρo(Tα+M(1+βT+γT2)) . Our model has few enough parameters (α , M, β , γ ) to relate them to the CNT physics. Below 70 K, we experimentally show that CNT material resistivity follows the Luttinger Liquid theory justifying the Tα term in our model. Above 70 K, the polynomial part becomes dominant and depends on the two different CNT fabrication techniques which lead to two very different yarn structures. For yarns made from floating catalyst chemical vapor deposition CNTs, the polynomial is explained by the percolation of metallic CNT walls. Whereas, the polynomial of yarns spun from CNT arrays is explained by the electrical transport in CNT bundles which are the basic building blocks of this type of yarns.

Electronic Supplementary Material

Download File(s)
12274_2020_2803_MOESM1_ESM.pdf (5 MB)

References

[1]
Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater .2014, 24, 3661-3682.
[2]
Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182-186.
[3]
Piraux, L.; Abreu Araujo, F.; Bui, T. N.; Otto, M. J.; Issi, J. P. Two-dimensional quantum transport in highly conductive carbon nanotube fibers. Phys. Rev. B 2015, 92, 085428.
[4]
Lekawa-Raus, A.; Walczak, K.; Kozlowski, G.; Wozniak, M.; Hopkins, S. C.; Koziol, K. K. Resistance-temperature dependence in carbon nanotube fibres. Carbon 2015, 84, 118-123.
[5]
Tonkikh, A. A.; Tsebro, V. I.; Obraztsova, E. A.; Suenaga, K.; Kataura, H.; Nasibulin, A. G.; Kauppinen, E. I.; Obraztsova, E. D. Metallization of single-wall carbon nanotube thin films induced by gas phase iodination. Carbon 2015, 94, 768-774.
[6]
Morelos-Gómez, A.; Fujishige, M.; Magdalena Vega-Díaz, S.; Ito, I.; Fukuyo, T.; Cruz-Silva, R.; Tristán-López, F.; Fujisawa, K.; Fujimori, T.; Futamura, R. et al. High electrical conductivity of double-walled carbon nanotube fibers by hydrogen peroxide treatments. J. Mater. Chem. A 2016, 4, 74-82.
[7]
Jakubinek, M. B.; Johnson, M. B.; White, M. A.; Jayasinghe, C.; Li, G.; Cho, W.; Schulz, M. J.; Shanov, V. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns. Carbon 2012, 50, 244-248.
[8]
Foroughi, J.; Spinks, G. M.; Ghorbani, S. R.; Kozlov, M. E.; Safaei, F.; Peleckis, G.; Wallace, G. G.; Baughman, R. H. Preparation and characterization of hybrid conducting polymer-carbon nanotube yarn. Nanoscale 2012, 4, 940-945.
[9]
Dini, Y.; Faure-Vincent, J.; Dijon, J. How to overcome the electrical conductivity limitation of carbon nanotube yarns drawn from carbon nanotube arrays. Carbon 2019, 144, 301-311.
[10]
Dini, Y.; Rouchon, D.; Faure-Vincent, J.; Dijon, J. Large improvement of CNT yarn electrical conductivity by varying chemical doping and annealing treatment. Carbon 2020, 156, 38-48.
[11]
Niven, J. F.; Johnson, M. B.; Juckes, S. M.; White, M. A.; Alvarez, N. T.; Shanov, V. Influence of annealing on thermal and electrical properties of carbon nanotube yarns. Carbon 2016, 99, 485-490.
[12]
Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.
[13]
Crespi, V. H.; Cohen, M. L.; Rubio, A. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett .1997, 79, 2093-2096.
[14]
Headrick, R. J.; Tsentalovich, D. E.; Berdegué, J.; Bengio, E. A.; Liberman, L.; Kleinerman, O.; Lucas, M. S.; Talmon, Y.; Pasquali, M. Structure-property relations in carbon nanotube fibers by downscaling solution processing. Adv. Mater .2018, 30, 1704482.
[15]
Sundaram, R. M.; Koziol, K. K. K.; Windle, A. H. Continuous direct spinning of fibers of single-walled carbon nanotubes with metallic chirality. Adv. Mater .2011, 23, 5064-5068.
[16]
Tsentalovich, D. E.; Headrick, R. J.; Mirri, F.; Hao, J. L.; Behabtu, N.; Young, C. C.; Pasquali, M. Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl. Mater. Interfaces 2017, 9, 36189-36198.
[17]
Hoecker, C.; Smail, F.; Bajada, M.; Pick, M.; Boies, A. Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis. Carbon 2016, 96, 116-124.
[18]
Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods. Carbon 2016, 99, 407-415.
[19]
Zabrodskiǐ, A. G.; Zinov’eva, K. N. Low-temperature conductivity and metal-insulator transition in compensate n-Ge. Sov. Phys. JETP 1984, 59, 425-433.
[20]
Jouni, M.; Faure-Vincent, J.; Fedorko, P.; Djurado, D.; Boiteux, G.; Massardier, V. Charge carrier transport and low electrical percolation threshold in multiwalled carbon nanotube polymer nanocomposites. Carbon 2014, 76, 10-18.
[21]
Menon, R.; Yoon, C. O.; Moses, D.; Heeger, A. J.; Cao, Y. Transport in polyaniline near the critical regime of the metal-insulator transition. Phys. Rev. B 1993, 48, 17685.
[22]
Farka, D.; Coskun, H.; Gasiorowski, J.; Cobet, C.; Hingerl, K.; Uiberlacker, L. M.; Hild, S.; Greunz, T.; Stifter, D.; Sariciftci, N. S. et al. Anderson-localization and the mott-ioffe-regel limit in glassy-metallic PEDOT. Adv. Electron. Mater .2017, 3, 1700050.
[23]
Gueye, M. N.; Carella, A.; Massonnet, N.; Yvenou, E.; Brenet, S.; Faure-Vincent, J.; Pouget, S.; Rieutord, F.; Okuno, H.; Benayad, A. et al. Structure and dopant engineering in PEDOT thin films: Practical tools for a dramatic conductivity enhancement. Chem. Mater .2016, 28, 3462-3468.
[24]
Vavro, J.; Kikkawa, J. M.; Fischer, J. E. Metal-insulator transition in doped single-wall carbon nanotubes. Phys. Rev. B 2005, 71, 155410.
[25]
Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci .2011, 56, 1178-1271.
[26]
Sheng, P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 1980, 21, 2180-2195.
[27]
Mott, S. N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Clarendon Press: Oxford, 1979.
[28]
Bommeli, F.; Degiorgi, L.; Wachter, P.; Legeza, Ö.; Jánossy, A.; Oszlányi, G.; Chauvet, O.; Forro, L. Metallic conductivity and metal-insulator transition in (AC60)n (A = K, Rb, and Cs) linear polymer fullerides. Phys. Rev. B 1995, 51, 14794.
[29]
Kaiser, A. B.; Düsberg, G.; Roth, S. Heterogeneous model for conduction in carbon nanotubes. Phys. Rev. B 1998, 57, 1418-1421.
[30]
Skákalová, V.; Kaiser, A. B.; Woo, Y. S.; Roth, S. Electronic transport in carbon nanotubes: From individual nanotubes to thin and thick networks. Phys. Rev. B 2006, 74, 085403.
[31]
Yanagi, K.; Udoguchi, H.; Sagitani, S.; Oshima, Y.; Takenobu, T.; Kataura, H.; Ishida, T.; Matsuda, K.; Maniwa, Y. Transport mechanisms in metallic and semiconducting single-wall carbon nanotube networks. ACS Nano 2010, 4, 4027-4032.
[32]
Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Tamburri, E.; Cianchetta, I.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L.; Pasquali, M. Effect of potassium doping on electrical properties of carbon nanotube fibers. Phys. Rev. B 2011, 84, 233406.
[33]
Weller, L.; Smail, F. R.; Elliott, J. A.; Windle, A. H.; Boies, A. M.; Hochgreb, S. Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon 2019, 146, 789-812.
[34]
Barnard, J. S.; Paukner, C.; Koziol, K. K. The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale 2016, 8, 17262-17270.
[35]
Bedewy, M.; Meshot, E. R.; Hart, A. J. Diameter-dependent kinetics of activation and deactivation in carbon nanotube population growth. Carbon 2012, 50, 5106-5116.
[36]
Saito, T.; Ohshima, S.; Okazaki, T.; Ohmori, S.; Yumura, M.; Iijima, S. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol .2008, 8, 6153-6157.
[37]
Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884-886.
[38]
Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity. Nat. Commun .2014, 5, 3848.
[39]
Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276-278.
[40]
Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447-1450.
[41]
Tans, S. J.; Devoret, M. H.; Dai, H. J.; Thess, A.; Smalley, R. E.; Geerligs, L. J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474-477.
[42]
Haldane, F. D. M. ‘Luttinger Liquid theory’ of one-dimensional quantum fluids. I. Properties of the luttinger model and their extension to the general 1D interacting spinless fermi gas. J. Phys. C Solid State Phys .1981, 14, 2585-2609. https://doi.org/10.1088/0022-3719/14/ 19/010.
[43]
Bockrath, M.; Cobden, D. H.; Lu, J.; Rinzler, A. G.; Smalley, R. E.; Balents, L.; McEuen, P. L. Luttinger-Liquid behaviour in carbon nanotubes. Nature 1999, 397, 598-601.
[44]
Ishii, H.; Kataura, H.; Shiozawa, H.; Yoshioka, H.; Otsubo, H.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; Nakatake, M. et al. Direct observation of Tomonaga-Luttinger-Liquid state in carbon nanotubes at low temperatures. Nature 2003, 426, 540-544.
[45]
Kim, N. Y.; Recher, P.; Oliver, W. D.; Yamamoto, Y.; Kong, J.; Dai, H. J. Tomonaga-Luttinger-Liquid features in ballistic single-walled carbon nanotubes: Conductance and shot noise. Phys. Rev. Lett .2007, 99, 036802.
[46]
Postma, H. W. C.; de Jonge, M.; Yao, Z.; Dekker, C. Electrical transport through carbon nanotube junctions created by mechanical manipulation. Phys. Rev. B 2000, 62, R10653.
[47]
Gao, B.; Komnik, A.; Egger, R.; Glattli, D. C.; Bachtold, A. Evidence for Luttinger-Liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett .2004, 92, 216804.
[48]
Zhao, S. H.; Wang, S.; Wu, F. Q.; Shi, W.; Utama, I. B.; Lyu, T.; Jiang, L. L.; Su, Y. D.; Wang, S. Q.; Watanabe, K. et al. Correlation of electron tunneling and plasmon propagation in a Luttinger Liquid. Phys. Rev. Lett .2018, 121, 047702.
[49]
Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922-1925.
[50]
Hunger, T.; Lengeler, B.; Appenzeller, J. Transport in ropes of carbon nanotubes: Contact barriers and Luttinger Liquid theory. Phys. Rev. B 2004, 69, 195406.
[51]
Bae, D. J.; Kim, K. S.; Park, Y. S.; Suh, E. K.; An, K. H.; Moon, J. M.; Lim, S. C.; Park, S. H.; Jeong, Y. H.; Lee, Y. H. Transport phenomena in an anisotropically aligned single-wall carbon nanotube film. Phys. Rev. B 2001, 64, 233401.
[52]
Shiraishi, M.; Ata, M. Tomonaga-luttinger-liquid behavior in single-walled carbon nanotube networks. Solid State Commun .2003, 127, 215-218.
[53]
Egger, R. Luttinger Liquid behavior in multiwall carbon nanotubes. Phys. Rev. Lett .1999, 83, 5547-5550.
[54]
Barberio, M.; Camarca, M.; Barone, P.; Bonanno, A.; Oliva, A.; Xu, F. Electric resistivity of multi-walled carbon nanotubes at high temperatures. Surf. Sci .2007, 601, 2814-2818.
[55]
Bachtold, A.; de Jonge, M.; Grove-Rasmussen, K.; McEuen, P. L.; Buitelaar, M.; Schönenberger, C. Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett .2001, 87, 166801.
[56]
Matveev, K. A.; Glazman, L. I. Coulomb blockade of tunneling into a quasi-one-dimensional wire. Phys. Rev. Lett .1993, 70, 990-993.
[57]
Bourlon, B.; Miko, C.; Forró, L.; Glattli, D. C.; Bachtold, A. Determination of the intershell conductance in multiwalled carbon nanotubes. Phys. Rev. Lett .2004, 93, 176806.
[58]
Wei, Y.; Jiang, K. L.; Feng, X. F.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 2007, 76, 045423.
[59]
Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys .2007, 101, 093710.
[60]
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; 3rd ed. Wiley: Hoboken, 2007.
[61]
Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett .2004, 92, 106804.
[62]
Park, J. Y.; Rosenblatt, S.; Yaish, Y.; Sazonova, V.; Üstünel, H.; Braig, S.; Arias, T. A.; Brouwer, P. W.; McEuen, P. L. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett .2004, 4, 517-520.
[63]
Yao, Z.; Kane, C. L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett .2000, 84, 2941-2944.
[64]
Yamamoto, T.; Watanabe, S.; Watanabe, K. Low-temperature thermal conductance of carbon nanotubes. Thin Solid Films 2004, 464-465, 350-353.
[65]
Perebeinos, V.; Tersoff, J.; Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett .2005, 94, 086802.
[66]
Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett .2005, 95, 146805.
[67]
Akinwande, D.; Nishi, Y.; Wong, H. S. P. An analytical derivation of the density of states, effective mass, and carrier density for achiral carbon nanotubes. IEEE Trans. Electron Devices 2008, 55, 289-297.
[68]
Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. Nanotechnol .2009, 4, 830-834.
[69]
Xu, F. B.; Sadrzadeh, A.; Xu, Z. P.; Yakobson, B. I. Can carbon nanotube fibers achieve the ultimate conductivity?—Coupled-mode analysis for electron transport through the carbon nanotube contact. J. Appl. Phys .2013, 114, 063714.
[70]
Xu, F. B.; Xu, Z. P.; Yakobson, B. I. Site-percolation threshold of carbon nanotube fibers—Fast inspection of percolation with Markov stochastic theory. Phys. A Stat. Mech. Its Appl .2014, 407, 341-349.
[71]
Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Carbon nanotube intramolecular junctions. Nature 1999, 402, 273-276.
[72]
Bedewy, M.; Meshot, E. R.; Reinker, M. J.; Hart, A. J. Population growth dynamics of carbon nanotubes. ACS Nano 2011, 5, 8974-8989.
[73]
Tunney, M. A.; Cooper, N. R. Effects of disorder and momentum relaxation on the intertube transport of incommensurate carbon nanotube ropes and multiwall nanotubes. Phys. Rev. B 2006, 74, 075406.
[74]
Agrawal, S.; Raghuveer, M. S.; Li, H.; Ramanath, G. Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes. Appl. Phys. Lett .2007, 90, 193104.
[75]
Zhong, G. F.; Warner, J. H.; Fouquet, M.; Robertson, A. W.; Chen, B. G.; Robertson, J. Growth of ultrahigh density single-walled carbon nanotube forests by improved catalyst design. ACS Nano 2012, 6, 2893-2903.
[76]
White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240-242.
[77]
Li, H. J.; Lu, W. G.; Li, J. J.; Bai, X. D.; Gu, C. Z. Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett .2005, 95, 086601.
[78]
Liang, J.; Chen, R. M.; Ramos, R.; Lee, J.; Okuno, H.; Kalita, D.; Georgiev, V.; Berrada, S.; Sadi, T.; Uhlig, B. et al. Investigation of Pt-salt-doped-standalone-multiwall carbon nanotubes for on-chip interconnect applications. IEEE Trans. Electron Devices 2019, 66, 2346-2352.
[79]
Liang, J.; Ramos, R.; Dijon, J.; Okuno, H.; Kalita, D.; Renaud, D.; Lee, J.; Georgiev, V. P.; Berrada, S.; Sadi, T. et al. A physics-based investigation of Pt-salt doped carbon nanotubes for local interconnects. In Proceedings of 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017, pp 35.5.1-35.5.4.
[80]
Kajiura, H.; Nandyala, A.; Bezryadin, A. Quasi-ballistic electron transport in as-produced and annealed multiwall carbon nanotubes. Carbon 2005, 43, 1317-1319.
Nano Research
Pages 1764-1779
Cite this article:
Dini Y, Faure-Vincent J, Dijon J. A unified electrical model based on experimental data to describe electrical transport in carbon nanotube-based materials. Nano Research, 2020, 13(6): 1764-1779. https://doi.org/10.1007/s12274-020-2803-z
Topics:
Metrics & Citations  
Article History
Copyright
Return