AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet

Jiahong Zhong1Juan Yu1,2Lingkai Cao1Cheng Zeng1Junnan Ding1Chunxiao Cong3Zongwen Liu4Yanping Liu1,5,6( )
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
School of Information Science and Technology, Fudan University, Shanghai 200433, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
Shenzhen Research Institute of Central South University, Shenzhen 518057, China
State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

The extraordinary optical and electronic properties of anisotropic two-dimensional materials, such as black phosphorus, ReS2, and GeSe, enable them a promising component of polarization-sensitive photodetectors. However, these applications are significantly limited by the challenges of air-stability, response time, and linearly dichroic ratio. Interestingly, palladium diselenide (PdSe2) with high air stability is an emerging material that has robust in-plane anisotropy induced by its asymmetric pentagonal lattice structure. We have successfully prepared a few-layer PdSe2 using micromechanical exfoliation, and here we demonstrate the strong linear dichroism behavior of PdSe2 by polarization-resolved absorption spectra measurements. Such unique linear dichroism, endows the PdSe2 photodetector powerful ability to detect polarized light. The photodetector based on 5L PdSe2, as tested with polarization-dependent photocurrent mapping, exhibited competitive capability to detect polarized light, achieving a significant photocurrent on/off ratio (> 102), the quite fast response time (< 11 ms) and robust linearly dichroic ratios (Imax/Imin ≈ 1.9 at 532 nm). These results are essential advance in the development of polarization-sensitive photodetector, a crucial step towards opening up a new avenue for the application of 2D optoelectronic devices.

References

[1]
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
[2]
Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491-495.
[3]
Vakil, A.; Engheta, N. Transformation optics using graphene. Science 2011, 332, 1291-1294.
[4]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[5]
Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978-8983.
[6]
Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[7]
Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K.; Lu, S. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.
[8]
Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076-4082.
[9]
Wang, X. T.; Li, Y. T.; Huang, L.; Jiang, X. W.; Jiang, L.; Dong, H. L.; Wei, Z. M.; Li, J. B.; Hu, W. P. Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976-14982.
[10]
Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090-14097.
[11]
Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511-2519.
[12]
Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/ germanium heterojunction. ACS Nano 2019, 13, 9907-9917.
[13]
Zeng, L. H.; Chen, Q. M.; Zhang, Z. X.; Wu, D.; Yuan, H. Y.; Li, Y. Y.; Qarony, W.; Lau, S. P.; Luo, L. B.; Tsang, Y. H. Multilayered PdSe2/ perovskite schottky junction for fast, self-powered, polarization-sensitive, broadband photodetectors, and image sensor application. Adv. Sci. 2019, 6, 1901134.
[14]
Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.
[15]
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
[16]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[17]
Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[18]
O’Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep. 2016, 6, 19476.
[19]
Puretzky, A. A.; Liang, L. B.; Li, X. F.; Xiao, K.; Wang, K.; Mahjouri-Samani, M.; Basile, L.; Idrobo, J. C.; Sumpter, B. G.; Meunier, V. et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 2015, 9, 6333-6342.
[20]
Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007-1015.
[21]
Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172-1182.
[22]
Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed .2015, 54, 2366-2369.
[23]
Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.
[24]
Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165-6170.
[25]
Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (pph3)-based n-doping technique. Adv. Mater. 2016, 28, 4824-4831.
[26]
Wu, J. Y.; Chun, Y. T.; Li, S. P.; Zhang, T.; Wang, J. Z.; Shrestha, P. K.; Chu, D. P. Broadband MoS2 field-effect phototransistors: Ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv. Mater. 2018, 30, 1705880.
[27]
Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219-2226.
[28]
Zhang, Z. D.; Yang, J. H.; Zhang, K.; Chen, S.; Mei, F. H.; Shen, G. Z. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J. Mater. Chem. C 2017, 5, 11288-11293.
[29]
Freitag, M.; Low, T.; Xia, F. N.; Avouris, P. Photoconductivity of biased graphene. Nat. Photon. 2013, 7, 53-59.
[30]
Li, J. T.; Naiini, M. M.; Vaziri, S.; Lemme, M. C.; Östling, M. Inkjet printing of MoS2. Adv. Funct. Mater. 2014, 24, 6524-6531.
[31]
Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; López-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511-5517.
[32]
Wu, J. B.; Cong, X.; Niu, S. Y.; Liu, F. X.; Zhao, H.; Du, Z. H.; Ravichandran, J.; Tan, P. H.; Wang, H. Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 2019, 31, 1902118.
[33]
Yang, H.; Pan, L. F.; Wang, X. T.; Deng, H. X.; Zhong, M. Z.; Zhou, Z. Q.; Lou, Z.; Shen, G. Z.; Wei, Z. M. Mixed-valence-driven quasi-1D SnIISnIVS3 with highly polarization-sensitive UV-vis-NIR photoresponse. Adv. Funct. Mater. 2019, 29, 1904416.
[34]
Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416-12423.
[35]
Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296-6341.
[36]
Xie, C.; Mak, C.; Tao, X. M.; Yan, F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 2017, 27, 1603886.
Nano Research
Pages 1780-1786
Cite this article:
Zhong J, Yu J, Cao L, et al. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Research, 2020, 13(6): 1780-1786. https://doi.org/10.1007/s12274-020-2804-y
Topics:

735

Views

69

Crossref

N/A

Web of Science

70

Scopus

10

CSCD

Altmetrics

Received: 22 January 2020
Revised: 09 April 2020
Accepted: 13 April 2020
Published: 30 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return