Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2

Meng Chen1,2,§Yanhui Pu1,§Zhenyang Li1Gang Huang1Xiaofang Liu1()Yao Lu1Wukui Tang1Li Xu3Shuangyu Liu3Ronghai Yu1()Jianglan Shui1()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Beijing Key Laboratory of Civil Aircraft Structures and Composite Material, COMAC Beijing Aircraft Technology Research Institute, Beijing 102211, China
Material Laboratory of State Grid Corporation of China, Global Energy Interconnection Research Institute Beijing, Beijing 102211, China

§ Meng Chen and Yanhui Pu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Catalysts play a critical role in improving the hydrogen storage kinetics in Mg/MgH2 system. Exploring highly efficient catalysts and catalyst design principles are hot topics but challenging. The catalytic activity of metallic elements on dehydrogenation kinetics generally follows a sequence of Ti > Nb > Ni > V > Co > Mo. Herein, we report a highly efficient alloy catalyst composed of low-active elements of Mo and Ni (i.e. MoNi alloy) for MgH2 particles. MoNi alloy nanoparticles show excellent catalytic effect, even outperforming most advanced Ti-based catalysts. The synergy between Mo and Ni elements can promote the break of Mg-H bonds and the dissociation of hydrogen molecules, thus significantly improves the kinetics of Mg/MgH2 system. The MoNi-catalyzed Mg/MgH2 system can absorb and release 6.7 wt.% hydrogen within 60 s and 10 min at 300 oC, respectively, and exhibits excellent cycling stability and low-temperature hydrogen storage performance. This study provides a strategy for designing efficient catalysts for hydrogen storage materials using the synergy of metal elements.

Electronic Supplementary Material

Download File(s)
12274_2020_2808_MOESM1_ESM.pdf (4.7 MB)

References

[1]
Cho, E. S.; Ruminski, A. M.; Aloni, S.; Liu, Y. S.; Guo, J. H.; Urban, J. J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. Nat. Commun. 2016, 7, 10804.
[2]
Yu, X. B.; Tang, Z. W.; Sun, D. L.; Ouyang, L. Z.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1-48.
[3]
Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ. 2019, 256, 117849.
[4]
Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259-268.
[5]
Zang, L.; Sun, W. Y.; Liu, S.; Huang, Y. K.; Yuan, H. T.; Tao, Z. L.; Wang, Y. J. Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl. Mater. Interfaces 2018, 10, 19598-19604.
[6]
Zhou, C. Y.; Szpunar, J. A.; Cui, X. Y. Synthesis of Ni/graphene nanocomposite for hydrogen storage. ACS Appl. Mater. Interfaces 2016, 8, 15232-15241.
[7]
Lutz, M.; Bhouri, M.; Linder, M.; Bürger, I. Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation. Appl. Energy 2019, 236, 1034-1048.
[8]
Samsatli, S.; Samsatli, N. J. The role of renewable hydrogen and inter-seasonal storage in decarbonising heat—Comprehensive optimisation of future renewable energy value chains. Appl. Energy 2019, 233-234, 854-893.
[9]
Shao, H. Y.; He, L. Q.; Lin, H. J.; Li, H. W. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol. 2018, 6, 445-458.
[10]
Xia, G. L.; Chen, X. W.; Zhao, Y.; Li, X. G.; Guo, Z. P.; Jensen, C. M.; Gu, Q. F.; Yu, X. B. High-performance hydrogen storage nanoparticles inside hierarchical porous carbon nanofibers with stable cycling. ACS Appl. Mater. Interfaces 2017, 9, 15502-15509.
[11]
Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 2012, 48, 7334-7343.
[12]
Liu, Y. F.; Zhang, X.; Wang, K.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Achieving ambient temperature hydrogen storage in ultrafine nanocrystalline TiO2@C-doped NaAlH4. J. Mater. Chem. A 2016, 4, 1087-1095.
[13]
Wang, T.; Jin, R. M.; Wu, X. Q.; Zheng, J.; Li, X. G.; Ostrikov, K. A highly efficient Ni-Mo bimetallic hydrogen evolution catalyst derived from a molybdate incorporated Ni-MOF. J. Mater. Chem. A 2018, 6, 9228-9235.
[14]
Bai, Y.; Pei, Z. W.; Wu, F.; Wu, C. Role of metal electronegativity in the dehydrogenation thermodynamics and kinetics of composite metal borohydride-LiNH2 hydrogen storage materials. ACS Appl. Mater. Interfaces 2018, 10, 9514-9521.
[15]
Cao, S.; Li, B.; Zhu, R. M.; Pang, H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem. Eng. J. 2019, 355, 602-623.
[16]
Zhang, X. L.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater. Today Nano 2020, 9, 100064.
[17]
Verón, M. G.; Troiani, H.; Gennari, F. C. Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties. Carbon 2011, 49, 2413-2423.
[18]
Barkhordarian, G.; Klassen, T.; Bormann, R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater. 2003, 49, 213-217.
[19]
Jia, Y. H.; Han, S. M.; Zhang, W.; Zhao, X.; Sun, P. F.; Liu, Y. Q.; Shi, H.; Wang, J. S. Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2. Int. J. Hydrog. Energy 2013, 38, 2352-2356.
[20]
Huang, W. C.; Yuan, J.; Zhang, J. G.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Zeng, M. Q.; Zhu, M. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions. Rare Met. 2017, 36, 574-580.
[21]
Ulmer, U.; Oertel, D.; Diemant, T.; Bonatto Minella, C.; Bergfeldt, T.; Dittmeyer, R.; Behm, R. J.; Fichtner, M. Performance improvement of V-Fe-Cr-Ti solid state hydrogen storage materials in impure hydrogen gas. ACS Appl. Mater. Interfaces 2018, 10, 1662-1671.
[22]
Zhang, X.; Ren, Z. H.; Lu, Y. H.; Yao, J. H.; Gao, M. X.; Liu, Y. F.; Pan, H. G. Facile synthesis and superior catalytic activity of Nano-TiN@N-C for hydrogen storage in NaAlH4. ACS Appl. Mater. Interfaces 2018, 10, 15767-15777.
[23]
Yang, B.; Zou, J. X.; Huang, T. P.; Mao, J. F.; Zeng, X. Q.; Ding, W. J. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method. Chem. Eng. J. 2019, 371, 233-243.
[24]
Zhang, X.; Liu, Y. F.; Wang, K.; Gao, M. X.; Pan, H. G. Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation. Nano Res. 2015, 8, 533-545.
[25]
Ma, X. Y.; Li, J. Q.; An, C. H.; Feng, J.; Chi, Y. H.; Liu, J. X.; Zhang, J.; Sun, Y. G. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production. Nano Res. 2016, 9, 2284-2293.
[26]
Naqvi, S. R.; Hussain, T.; Luo, W.; Ahuja, R. Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Nano Res. 2018, 11, 3802-3813.
[27]
Liu, Y. F.; Du, H. F.; Zhang, X.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun. 2016, 52, 705-708.
[28]
Zhang, L. T.; Chen, L. X.; Fan, X. L.; Xiao, X. Z.; Zheng, J. G.; Huang, X. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J. Mater. Chem. A 2017, 5, 6178-6185.
[29]
Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd. 1999, 292, 247-252.
[30]
Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645-9655.
[31]
Xia, G. L.; Tan, Y. B.; Chen, X. W.; Sun, D. L.; Guo, Z. P.; Liu, H. K.; Ouyang, L. Z.; Zhu, M.; Yu, X. B. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. 2015, 27, 5981-5988.
[32]
Zhong, Y. J.; Dai, H. B.; Zhu, M.; Wang, P. Catalytic decomposition of hydrous hydrazine over Ni-Pt/La2O3 catalyst: A high-performance hydrogen storage system. Int. J. Hydrog. Energy 2016, 41, 11042-11049.
[33]
Wu, Y. P.; Xu, F.; Sun, L. X.; Xia, Y. P.; Li, P.; Chen, J.; Yang, X.; Yu, F.; Zhang, H. Z.; Chu, H. L. et al. Improved dehydrogenation performance of Li-B-N-H by doped NiO. Metals 2018, 8, 258.
[34]
Liu, Y. F.; Ren, Z. H.; Zhang, X.; Jian, N.; Yang, Y. X.; Gao, M. X.; Pan, H. G. Development of catalyst-enhanced sodium alanate as an advanced hydrogen-storage material for mobile applications. Energy Technol. 2018, 6, 487-500.
[35]
Wang, K.; Du, H. F.; Wang, Z. Y.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int. J. Hydrog. Energy 2017, 42, 4244-4251.
[36]
Xie, X. B.; Chen, M.; Liu, P.; Shang, J. X.; Liu, T. Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg-Ni-V nanocomposite. Chem. Eng. J. 2018, 347, 145-155.
[37]
Garcia, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano 2014, 8, 11512-11521.
[38]
Prieto, G.; Beijer, S.; Smith, M. L.; He, M.; Au, Y.; Wang, Z.; Bruce, D. A.; de Jong, K. P.; Spivey, J. J.; de Jongh, P. E. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew. Chem., Int. Ed. 2014, 53, 6397-6401.
[39]
Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater. 2018, 8, 1701345.
[40]
Liu, Y. Y.; Han, G. S.; Zhang, X. Y.; Xing, C. C.; Du, C. X.; Cao, H. Q.; Li, B. J. Co-Co3O4@carbon core-shells derived from metal-organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Res. 2017, 10, 3035-3048.
[41]
Wang, X. X.; Wang, J. M.; Sun, X. P.; Wei, S.; Cui, L.; Yang, W. R.; Liu, J. Q. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018, 11, 988-996.
[42]
Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3-x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.
[43]
Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
[44]
Wang, Z. Y.; Ren, Z. H.; Jian, N.; Gao, M. X.; Hu, J. J.; Du, F.; Pan, H. G.; Liu, Y. F. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J. Mater. Chem. A 2018, 6, 16177-16185.
[45]
Malouche, A.; Blanita, G.; Lupu, D.; Bourgon, J.; Nelayah, J.; Zlotea, C. Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr). J. Mater. Chem. A 2017, 5, 23043-23052.
[46]
Shen, C. Q.; Aguey-Zinsou, K. F. Can γ-MgH2 improve the hydrogen storage properties of magnesium? J. Mater. Chem. A 2017, 5, 8644-8652.
[47]
Liu, T.; Ma, X. J.; Chen, C. G.; Xu, L.; Li, X. G. Catalytic effect of Nb nanoparticles for improving the hydrogen storage properties of Mg-based nanocomposite. J. Phys. Chem. C 2015, 119, 14029-14037.
[48]
Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3-x Nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.
[49]
Zhang, J. G.; Zhu, Y. F.; Zang, X. X.; Huan, Q. Q.; Su, W.; Zhu, D. L.; Li, L. Q. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J. Mater. Chem. A 2016, 4, 2560-2570.
[50]
Bandyopadhyay, P.; Saeed, G.; Kim, N. H.; Lee, J. H. Zinc-nickel-cobalt oxide@NiMoO4 core-shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem. Eng. J. 2020, 384, 123357.
[51]
Ouyang, L. Z.; Yang, X. S.; Zhu, M.; Liu, J. W.; Dong, H. W.; Sun, D. L.; Zou, J.; Yao, X. D. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J. Phys. Chem. C 2014, 118, 7808-7820.
[52]
Hočevar, B.; Grilc, M.; Huš, M.; Likozar, B. Mechanism, ab initio calculations and microkinetics of straight-chain alcohol, ether, ester, aldehyde and carboxylic acid hydrodeoxygenation over Ni-Mo catalyst. Chem. Eng. J. 2019, 359, 1339-1351.
[53]
Wang, C. H.; Qi, W. L.; Zhou, Y.; Kuang, W. D.; Azhagan, T.; Thomas, T.; Jiang, C. J.; Liu, S. Q.; Yang, M. H. Ni-Mo ternary nitrides based one-dimensional hierarchical structures for efficient hydrogen evolution. Chem. Eng. J. 2020, 381, 122611.
[54]
Li, R. F.; Yu, R. H.; Liu, X. F.; Wan, J.; Wang, F. Study on the phase structures and electrochemical performances of La0.6Gd0.2Mg0.2 Ni3.15-xCo0.25Al0.1Mnx (x = 0-0.3) alloys as negative electrode material for nickel/metal hydride batteries. Electrochim Acta 2015, 158, 89-95.
[55]
Li, R. F.; Xu, P. Z.; Zhao, Y. M.; Wan, J.; Liu, X. F.; Yu, R. H. The microstructures and electrochemical performances of La0.6Gd0.2Mg0.2 Ni3.0Co0.5-xAlx (x = 0-0.5) hydrogen storage alloys as negative electrodes for nickel/metal hydride secondary batteries. J. Power Sources 2014, 270, 21-27.
[56]
Ouyang, L. Z.; Yang, X. S.; Dong, H. W.; Zhu, M. Structure and hydrogen storage properties of Mg3Pr and Mg3PrNi0.1 alloys. Scr. Mater. 2009, 61, 339-342.
[57]
Ouyang, L. Z.; Ye, S. Y.; Dong, H. W.; Zhu, M. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films. Appl. Phys. Lett. 2007, 90, 021917.
[58]
Zhu, M.; Wang, H.; Ouyang, L. Z.; Zeng, M. Q. Composite structure and hydrogen storage properties in Mg-base alloys. Int. J. Hydrog. Energy 2006, 31, 251-257.
[59]
Zhang, J. G.; Shi, R.; Zhu, Y. F.; Liu, Y. N.; Zhang, Y.; Li, S. S.; Li, L. Q. Remarkable synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen sorption kinetics of MgH2. ACS Appl. Mater. Interfaces 2018, 10, 24975-24980.
[60]
El-Eskandarany, M. S.; Shaban, E.; Aldakheel, F.; Alkandary, A.; Behbehani, M.; Al-Saidi, M. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell. Sci. Rep. 2017, 7, 13296.
[61]
Zhang, X.; Leng, Z. H.; Gao, M. X.; Hu, J. J.; Du, F.; Yao, J. H.; Pan, H. G.; Liu, Y. F. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J. Power Sources 2018, 398, 183-192.
[62]
Xia, G. L.; Chen, X. W.; Zhou, C. F.; Zhang, C. F.; Li, D.; Gu, Q. F.; Guo, Z. P.; Liu, H. K.; Liu, Z. W.; Yu, X. B. Nano-confined multi-synthesis of a Li-Mg-N-H nanocomposite towards low-temperature hydrogen storage with stable reversibility. J. Mater. Chem. A 2015, 3, 12646-12652.
Nano Research
Pages 2063-2071
Cite this article:
Chen M, Pu Y, Li Z, et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Research, 2020, 13(8): 2063-2071. https://doi.org/10.1007/s12274-020-2808-7
Topics:
Metrics & Citations  
Article History
Copyright
Return