AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles

Yang Guo1,2,§Bin Li3,§Yuan Huang1,§Shuo Du1,2Chi Sun1,2Hailan Luo1Baoli Liu1,2,4Xingjiang Zhou1Jinlong Yang3Junjie Li1,2,4Changzhi Gu1,2( )
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS), University of Science and Technology of China, Hefei 230026, China
Songshan Lake Materials Laboratory, Dongguan 523808, China

§ Yang Guo, Bin Li, and Yuan Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Strain engineering provides an important strategy to modulate the optical and electrical properties of semiconductors for improving devices performance with mechanical force or thermal expansion difference. Here, we present the investigation of the local strain distribution over few-layer MoS2 bubbles, by using scanning photoluminescence and Raman spectroscopies. We observe the obvious direct bandgap emissions with strain in the few-layer MoS2 bubble and the strain-induced continuous energy shifts of both resonant excitons and vibrational modes from the edge of the MoS2 bubble to the center (10 μm scale), associated with the oscillations resulted from the optical interference-induced temperature distribution. To understand these results, we perform ab initio simulations to calculate the electronic and vibrational properties of few-layer MoS2 with biaxial tensile strain, based on density functional theory, finding good agreement with the experimental results. Our study suggests that local strain offers a convenient way to continuously tune the physical properties of a few-layer transition metal dichalcogenides (TMDs) semiconductor, and opens up new possibilities for band engineering within the 2D plane.

Electronic Supplementary Material

Download File(s)
12274_2020_2809_MOESM1_ESM.pdf (2 MB)

References

[1]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, W. S.; Morozov, V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[2]
Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.
[3]
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[4]
Mak, K. F.; Xiao, D.; Shan, J. Light-valley interactions in 2D semiconductors. Nat. Photonics 2018, 12, 451-460.
[5]
Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216-226.
[6]
Wang, H. T.; Yuan, H. T.; Hong, S. S.; Li, Y. B.; Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2664-2680.
[7]
Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.
[8]
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
[9]
Xie, S. E.; Tu, L. J.; Han, Y. M.; Huang, L. J.; Kang, K.; Lao, K. U.; Poddar, P.; Park, C.; Muller, D. A.; DiStasio, R. A. Jr. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 2018, 359, 1131-1136.
[10]
Martella, C.; Mennucci, C.; Lamperti, A.; Cappelluti, E.; de Mongeot, F. B.; Molle, A. Designer shape anisotropy on transition-metal -dichalcogenide nanosheets. Adv. Mater. 2018, 30, 1705615.
[11]
Zhao, X. X.; Ding, Z. J.; Chen, J. Y.; Dan, J. D.; Poh, S. M.; Fu, W.; Pennycook, S. J.; Zhou, W.; Loh, K. P. Strain modulation by van der Waals coupling in bilayer transition metal dichalcogenide. ACS Nano 2018, 12, 1940-1948.
[12]
Ahn, G. H.; Amani, M.; Rasool, H.; Lien, D. H.; Mastandrea, J. P.; Ager III, J. W. Dubey, M.; Chrzan, D. C.; Minor, A. M.; Javey, A. Strain-engineered growth of two-dimensional materials. Nat. Commun. 2017, 8, 608.
[13]
Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[14]
Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S.; Scott, J. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett. 2016, 16, 5836-5841.
[15]
Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592-4597.
[16]
Franzl, T.; Klar, T. A.; Schietinger, S.; Rogach, A. L.; Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 2004, 4, 1599-1603.
[17]
Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.
[18]
Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 2012, 6, 866-872.
[19]
Li, H.; Contryman, A. W.; Qian, X. F.; Ardakani, S. M.; Gong, Y. J.; Wang, X. L.; Weisse, J. M.; Lee, C. H.; Zhao, J. H.; Ajayan, P. M. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381.
[20]
Branny, A.; Kumar, S.; Proux, R.; Gerardot, B. D. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 2017, 8, 15053.
[21]
Palacios-Berraquero, C.; Kara, D. M.; Montblanch, A. R. P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A. K.; Loncar, M.; Ferrari, A. C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093.
[22]
Sun, J. Y.; Li, X. X.; Yang, J. L. Significantly enhanced charge separation in rippled monolayer graphitic C3N4. ChemCatChem 2019, 11, 6252-6257.
[23]
Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152-158.
[24]
Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.
[25]
Castellanos-Gomez, A.; Agraït, N.; Rubio-Bollinger, G. Optical identification of atomically thin dichalcogenide crystals. Appl. Phys. Lett. 2010, 96, 213116.
[26]
Huang, Y.; Wang, X.; Zhang, X.; Chen, X. J.; Li, B. W.; Wang, B.; Huang, M.; Zhu, C. Y.; Zhang, X. W.; Bacsa, W. S. et al. Raman spectral band oscillations in large graphene bubbles. Phys. Rev. Lett. 2018, 120, 186104.
[27]
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626-3630.
[28]
Steinhoff, A.; Kim, J. H.; Jahnke, F.; Rösner, M.; Kim, D. S.; Lee, C.; Han, G. H.; Jeong, M. S.; Wehling, T. O.; Gies, C. Efficient excitonic photoluminescence in direct and indirect band gap monolayer MoS2. Nano Lett. 2015, 15, 6841-6847.
[29]
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385-1390.
[30]
Wang, Y. L.; Cong, C. X.; Qiu, C. Y.; Yu, T. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 2013, 9, 2857-2861.
[31]
Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 2015, 15, 346-353.
[32]
Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617-621.
[33]
Hu, Z. J.; Bao, Y. J.; Li, Z. W.; Gong, Y. J.; Feng, R.; Xiao, Y. D.; Wu, X. C.; Zhang, Z. H.; Zhu, X.; Ajayan, P. M. et al. Temperature dependent Raman and photoluminescence of vertical WS2/MoS2 monolayer heterostructures. Sci. Bull. 2017, 62, 16-21.
[34]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[35]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[36]
Liu, Q. H.; Li, L. Z.; Li, Y. F.; Gao, Z. X.; Chen, Z. F.; Lu, J. J. Tuning electronic structure of bilayer MoS2 by vertical electric field: A First-Principles investigation. Phys. Chem. C 2012, 116, 21556-21562.
[37]
McCreary, A.; Ghosh, R.; Amani, M.; Wang, J.; Duerloo, K. A. N.; Sharma, A.; Jarvis, K.; Reed, E. J.; Dongare, A. M.; Banerjee, S. K. et al. Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano 2016, 10, 3186-3197.
[38]
Dong, L.; Dongare, A. M.; Namburu, R. R.; O’Regan, T. P.; Dubey, M. Theoretical study on strain induced variations in electronic properties of 2H-MoS2 bilayer sheets. Appl. Phys. Lett. 2014, 104, 053107.
[39]
Fichter, W. B. Some solutions for the large deflections of uniformly loaded circular membranes. NASA Tech. Pap. 1997, 3658, 1-20.
[40]
Sun, Y. W.; Liu, W.; Hernandez, I.; Gonzalez, J.; Rodriguez, F.; Dunstan, D. J.; Humphreys, C. J. 3D strain in 2D materials: To what extent is monolayer graphene graphite? Phys. Rev. Lett. 2019, 123, 135501.
Nano Research
Pages 2072-2078
Cite this article:
Guo Y, Li B, Huang Y, et al. Direct bandgap engineering with local biaxial strain in few-layer MoS2 bubbles. Nano Research, 2020, 13(8): 2072-2078. https://doi.org/10.1007/s12274-020-2809-6
Topics:

666

Views

26

Crossref

N/A

Web of Science

25

Scopus

5

CSCD

Altmetrics

Received: 23 December 2019
Revised: 10 April 2020
Accepted: 13 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return