AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization

Rebecca Vismara1,Corrado Di Nicola2Rodrigo Gil-San Millán3Kostiantyn V. Domasevich4Claudio Pettinari5,6Jorge A. R. Navarro3( )Simona Galli1,7( )
Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, 22100 Como, Italy
School of Science and Technology, University of Camerino, 62032 Camerino (MC), Italy
Departamento de Química Inorgánica, Universidad de Granada, 18071 Granada, Spain
Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy
Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), 50019 Sesto Fiorentino, Italy
Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, 50121 Firenze, Italy

Present address: Department of Chemistry, University of Liverpool, Liverpool L7 3NY, UK

Show Author Information

Graphical Abstract

Abstract

Hydrocarbons separation in petrochemical industries is a key, energy-consuming stage in the manufacture of high-quality added-value products—hence the need for more efficient materials and environmentally friendly methodologies to improve this process. In this context, we have studied the effect of metal-organic frameworks (MOFs) pore functionalization in hexane isomers separation, isolating the robust isoreticular zinc(II) bipyrazolates Zn(BPZ), showing no pore decoration, Zn(Me2BPZ), the pores of which are decorated with apolar methyl groups, and Zn(BPZ(NH2)2), the spacers of which possess polar Lewis-basic functions (H2BPZ = 1H,1’H-4,4’-bipyrazole; H2Me2BPZ = 3,3’-dimethyl-1H,1’H-4,4’-bipyrazole; H2BPZ(NH2)2 = 3,5-diamino- 1H,1’H-4,4’-bipyrazole; DMF = dimethylformamide). After characterizing Zn(BPZ(NH2)2) as per its crystal structure and thermal behaviour, and all the three MOFs as per their textural properties, we investigated, from the experimental and computational points of view, the impact of the square one-dimensional channels decoration on the separation of the hexane isomers, demonstrating the relevance of pore constrictions in the resolution of the title alkanes mixture.

Electronic Supplementary Material

Download File(s)
12274_2020_2812_MOESM1_ESM.pdf (3.8 MB)
12274_2020_2812_MOESM2_ESM.cif (648.4 KB)
12274_2020_2812_MOESM3_ESM.cif (17.3 KB)

References

[1]
R. A. Meyers, Handbook of Petroleum Refining Processes, 3rd ed.; McGraw-Hill: New York, USA, 2004.
[2]
A. Perdih,; F. Perdih, Chemical interpretation of octane number. Acta Chim. Slov. 2006, 53, 306-315.
[3]
Z. R. Herm,; B. M. Wiers,; J. A. Mason,; J. M. van Baten,; M. R. Hudson,; P. Zajdel,; C. M. Brown,; N. Masciocchi,; R. Krishna,; J. R. Long, Separation of hexane isomers in a metal-organic framework with triangular channels. Science 2013, 340, 960-964.
[4]
T. C. Holcombe, N-paraffin-isoparaffin separation process. U.S. Patent 4,176,053, November 27, 1979.
[5]
T. C. Holcombe, Total isomerization process. U.S. Patent 4,210,771, July 1, 1980.
[6]
A. Minkkinen,; L. Mank,; S. Jullian, Process for the isomerization of C5/C6 normal paraffins with recycling of normal paraffins. U.S. Patent 5,233,120, August 3, 1993.
[7]
J. P. Wauquier, Petroleum Refining; Editions TECHNIP: Paris, France, 2000.
[8]
P. S. Bárcia,; J. A. C. Silva,; A. E. Rodrigues, Adsorption dynamics of C5-C6 isomerate fractions in zeolite beta for the octane improvement of gasoline. Energy Fuels 2010, 24, 1931-1940.
[9]
X. Zhao,; Y. X. Wang,; D. S. Li,; X. H. Bu,; P. Y. Feng, Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.
[10]
J. Li,; X. X. Wang,; G. X. Zhao,; C. L. Chen,; Z. F. Chai,; A. Alsaedi,; T. Hayat,; X. K. Wang, Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322-2356.
[11]
H. Li,; K. C. Wang,; Y. J. Sun,; C. T. Lollar,; J. L. Li,; H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108-121.
[12]
N. S. Bobbitt,; M. L. Mendonca,; A. J. Howarth,; T. Islamoglu,; J. T. Hupp,; O. K. Farha,; R. Q. Snurr, Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46, 3357-3385.
[13]
K. Adil,; Y. Belmabkhout,; R. S. Pillai,; A. Cadiau,; P. M. Bhatt,; A. H. Assen,; G. Maurin,; M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402-3430.
[14]
F. A. A. Paz,; J. Klinowski,; S. M. F. Vilela,; J. P. C. Tomé,; J. A. S. Cavaleiro,; J. Rocha, Ligand design for functional metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 1088-1110.
[15]
P. S. Bárcia,; F. Zapata,; J. A. C. Silva,; A. E. Rodrigues,; B. L. Chen, Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. J. Phys. Chem. B 2007, 111, 6101-6103.
[16]
H. Wang,; X. L. Dong,; J. Z. Lin,; S. J. Teat,; S. Jensen,; J. Cure,; E. V. Alexandrov,; Q. B. Xia,; K. Tan,; Q. N. Wang, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 2018, 9, 1745.
[17]
W. Bury,; A. M. Walczak,; M. K. Leszczyński,; J. A. R. Navarro, Rational design of noncovalent diamondoid microporous materials for low-energy separation of C6-hydrocarbons. J. Am. Chem. Soc. 2018, 140, 15031-15037.
[18]
B. L. Chen,; C. D. Liang,; J. Yang,; D. S. Contreras,; Y. L. Clancy,; E. B. Lobkovsky,; O. M. Yaghi,; S. Dai, A Microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew. Chem., Int. Ed. 2006, 45, 1390-1393.
[19]
D. Peralta,; G. Chaplais,; A. Simon-Masseron,; K. Barthelet,; G. D. Pirngruber, Separation of C6 paraffins using zeolitic imidazolate frameworks: Comparison with zeolite 5A. Ind. Eng. Chem. Res. 2012, 51, 4692-4702.
[20]
V. Finsy,; S. De Bruyne,; L. Alaerts,; D. De Vos,; P. A. Jacobs,; G. V. Baron,; J. F. M. Denayer, Shape selective adsorption of linear and branched alkanes in the Cu3(BTC)2 metal-organic framework. Stud. Surf. Sci. Catal. 2007, 170, 2048-2053.
[21]
V. Finsy,; S. Calero,; E. García-Pérez,; P. J. Merkling,; G. Vedts,; D. E. De Vos,; G. V. Baron,; J. F. M. Denayer, Low-coverage adsorption properties of the metal-organic framework MIL-47 studied by pulse chromatography and Monte Carlo simulations. Phys. Chem. Chem. Phys. 2009, 11, 3515-3521.
[22]
P. S. Bárcia,; D. Guimarães,; P. A. P. Mendes,; J. A. C. Silva,; V. Guillerm,; H. Chevreau,; C. Serre,; A. E. Rodrigues, Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous Mesoporous Mater. 2011, 139, 67-73.
[23]
Z. R. Herm,; E. D. Bloch,; J. R. Long, Hydrocarbon separations in metal-organic frameworks. Chem. Mater. 2014, 26, 323-338.
[24]
P. A. P. Mendes,; F. Ragon,; A. E. Rodrigues,; P. Horcajada,; C. Serre,; J. A. C. Silva, Hexane isomers sorption on a functionalized metal-organic framework. Microporous Mesoporous Mater. 2013, 170, 251-258.
[25]
P. A. P. Mendes,; P. Horcajada,; S. Rives,; H. Ren,; A. E. Rodrigues,; T. Devic,; E. Magnier,; P. Trens,; H. Jobic,; J. Ollivier, et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework. Adv. Funct. Mater. 2014, 24, 7666-7673.
[26]
P. A. P. Mendes,; A. E. Rodrigues,; P. Horcajada,; J. Eubank,; T. Devic,; C. Serre,; J. A. C. Silva, Separation of hexane isomers on rigid porous metal carboxylate-based metal-organic frameworks. Adsorpt. Sci. Technol. 2014, 32, 475-488.
[27]
L. H. Wee,; M. Meledina,; S. Turner,; G. Van Tendeloo,; K. Zhang,; L. M. Rodriguez-Abelo,; A. Masala,; S. Bordiga,; J. W. Jiang,; J. A. R. Navarro, et al. 1D-2D-3D transformation synthesis of hierarchical metal-organic framework adsorbent for multicomponent alkane separation. J. Am. Chem. Soc. 2017, 139, 819-828.
[28]
Y. G. Chung,; P. Bai,; M. Haranczyk,; K. T. Leperi,; P. Li,; H. D. Zhang,; T. C. Wang,; T. Duerinck,; F. Q. You,; J. T. Hupp, et al. Computational screening of nanoporous materials for hexane and heptane isomer separation. Chem. Mater. 2017, 29, 6315-6328.
[29]
R. B. Lin,; S. C. Xiang,; H. B. Xing,; W. Zhou,; B. L. Chen, Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87-103.
[30]
X. Zhao,; Y. X. Wang,; D. S. Li,; X. H. Bu,; P. Y. Feng, Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.
[31]
M. L. Maloncy,; L. Gora,; J. C. Jansen,; T. Maschmeyer, Conceptual processes for zeolite membrane based hydroisomerization of light alkanes. Ars Separatoria Acta 2003, 2, 18-28.
[32]
N. Y. Chen, Shape Selective Catalysis in Industrial Applications, 2nd ed.; CRC Press: New York, USA, 1996.
[33]
C. Pettinari,; A. Tǎbǎcaru,; I. Boldog,; K. V. Domasevitch,; S. Galli,; N. Masciocchi, Novel coordination frameworks incorporating the 4,4′-bipyrazolyl ditopic ligand. Inorg. Chem. 2012, 51, 5235-5245.
[34]
N. Mosca,; R. Vismara,; J. A. Fernandes,; S. Casassa,; K. V. Domasevitch,; E. Bailón-García,; F. J. Maldonado-Hódar,; C. Pettinari,; S. Galli, CH3-tagged bis(pyrazolato)-based coordination polymers and metal-organic frameworks: An experimental and theoretical insight. Cryst. Growth Des. 2017, 17, 3854-3867.
[35]
K. V Domasevitch,; I. Gospodinov,; H. Krautscheid,; T. M. Klapötke,; J. Stierstorfer, Facile and selective polynitrations at the 4-pyrazolyl dual backbone: Straightforward access to a series of high-density energetic materials. New J. Chem. 2019, 43, 1305-1312.
[36]
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons, Inc.: New Jersey, 2009.
[37]
M. Eddaoudi,; J. Kim,; N. Rosi,; D. Vodak,; J. Wachter,; M. O’Keeffe,; O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
[38]
V. A. Blatov,; A. P. Shevchenko,; D. M. Proserpio, Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576-3586.
[39]
A. L. Spek, Structure validation in chemical crystallography. Acta Cryst. D 2009, D65, 148-155.
[40]
S. Galli,; N. Masciocchi,; V. Colombo,; A. Maspero,; G. Palmisano,; F. J. López-Garzón,; M. Domingo-García,; I. Fernández-Morales,; E. Barea,; J. A. R. Navarro, Adsorption of harmful organic vapors by flexible hydrophobic bis-pyrazolate based MOFs. Chem. Mater. 2010, 22, 1664-1672.
[41]
A. Knebel,; B. Geppert,; K. Volgmann,; D. I. Kolokolov,; A. G. Stepanov,; J. Twiefel,; P. Heitjans,; D. Volkmer,; J. Caro, Defibrillation of soft porous metal-organic frameworks with electric fields. Science 2017, 358, 347-351.
[42]
K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (provisional). Pure Appl. Chem. 1982, 54, 2201-2218.
[43]
R. Luebke,; J. F. Eubank,; A. J. Cairns,; Y. Belmabkhout,; L. Wojtas,; M. Eddaoudi, The unique Rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chem. Commun. 2012, 48, 1455-1457.
[44]
J. F. M. Denayer,; A. R. Ocakoglu,; J. A. Martens,; G. V. Baron, Investigation of inverse shape selectivity in alkane adsorption on SAPO-5 zeolite using the tracer chromatography technique. J. Catal. 2004, 226, 240-244.
[45]
D. F. Lv,; H. Wang,; Y. W. Chen,; F. Xu,; R. F. Shi,; Z. W. Liu,; X. L. Wang,; S. J. Teat,; Q. B. Xia,; Z. Li, et al. Iron-based metal-organic framework with hydrophobic quadrilateral channels for highly selective separation of hexane isomers. ACS Appl. Mater. Interfaces 2018, 10, 6031-6038.
[46]
P. S. Barcía,; J. A. C. Silva,; A. E. Rodrigues, Multicomponent sorption of hexane isomers in zeolite BETA. AICE J. 2007, 53, 1970-1981.
[47]
R. Krishna,; J. M. van Baten, Screening of zeolite adsorbents for separation of hexane isomers: A molecular simulation study. Sep. Purif. Technol. 2007, 55, 246-255.
[48]
J. Kim,; M. Choi,; R. Ryoo, Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J. Catal. 2010, 269, 219-228.
[49]
Dassault Systèmes BIOVIA. Biovia Materials Studio, version 6.0; Dassault Systèmes: San Diego, USA, 2018.
[50]
A. V. Sharko,; G. A. Senchyk,; E. B. Rusanov,; K. V. Domasevitch, Preparative synthesis of 3(5),3′(5′)-dimethyl-4,4′-bipyrazole. Tetrahedron Lett. 2015, 56, 6089-6092.
[51]
I. Boldog,; J. Sieler,; A. N. Chernega,; K. V. Domasevitch, 4,4′- Bipyrazolyl: New bitopic connector for construction of coordination networks. Inorg. Chim. Acta 2002, 338, 69-77.
[52]
I. Gospodinov,; K. V Domasevitch,; C. C. Unger,; T. M. Klapötke,; J. Stierstorfer, Midway between energetic molecular crystals and high-density energetic salts: Crystal engineering with hydrogen bonded chains of polynitro bipyrazoles. Cryst. Growth Des. 2020, 20, 755-764.
[53]
A. A. Coelho, Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Cryst. 2003, 36, 86-95.
[54]
Coelho Software. TOPAS-Academic V6. http://www.topas-academic.net (accessed Jan 15, 2020).
[55]
R. W. Cheary,; A. Coelho, A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 1992, 25, 109-121.
[56]
J. Rouquerol,; P. Llewellyn,; F. Rouquerol, Is the BET equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49-56.
[57]
A. S. Münch,; J. Seidel,; A. Obst,; E. Weber,; F. O. R. L. Mertens, High-separation performance of chromatographic capillaries coated with MOF-5 by the controlled SBU approach. Chem.—Eur. J. 2011, 17, 10958-10964.
[58]
A. T. James,; A. J. P. Martin, Gas-liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 1952, 50, 679-690.
[59]
H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338-7364.
Nano Research
Pages 532-540
Cite this article:
Vismara R, Di Nicola C, Millán RG-S, et al. Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Research, 2021, 14(2): 532-540. https://doi.org/10.1007/s12274-020-2812-y
Topics:

829

Views

9

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 11 February 2020
Revised: 31 March 2020
Accepted: 14 April 2020
Published: 11 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return