AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks

Celia Castillo-Blas1,Consuelo Álvarez-Galván2( )Inés Puente-Orench3,4Alba García-Sánchez5Freddy E. Oropeza5Enrique Gutiérrez-Puebla1Ángeles Monge1( )Víctor A. de la Peña-O’Shea5( )Felipe Gándara1( )
Materials Science Institute of Madrid (CSIC), C/Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Madrid 28049, Spain
Instituto de Ciencia de Materiales de Aragón, Pedro Cerbuna 12, Zaragoza 50009, Spain
Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
Photoactivated Processes Unit IMDEA Energy Institute, Móstoles Technology Park, Avenida Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain

Present address: Department of Inorganic Chemistry, University Autonomous of Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain

Show Author Information

Graphical Abstract

Abstract

The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks (MOFs) endowed by reticular chemistry, allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity. The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations, multi-metal spinel oxides with precise compositions can be obtained, and used as catalyst precursor for the reverse water-gas shift reaction. The differences in the spinel initial composition and structure, determined by neutron powder diffraction, influence the overall catalytic activity with changes in the process of in situ formation of active, metal-oxide supported metal nanoparticles, which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.

Electronic Supplementary Material

Download File(s)
12274_2020_2813_MOESM1_ESM.pdf (3.7 MB)

References

[1]
C. Hepburn,; E. Adlen,; J. Beddington,; E. A. Carter,; S. Fuss,; N. Mac Dowell,; J. C. Minx,; P. Smith,; C. K. Williams, The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87-97.
[2]
V. A. de la Peña O’Shea,; N. N. Menéndez,; J. D. Tornero,; J. L. G. Fierro, Unusually high selectivity to C2+ alcohols on bimetallic CoFe catalysts during CO hydrogenation. Catal. Lett. 2003, 88, 123-128.
[3]
X. Su,; X. L. Yang,; B. Zhao,; Y. Q. Huang, Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions. J. Energy Chem. 2017, 26, 854-867.
[4]
Y. A. Daza,; R. A. Kent,; M. M. Yung,; J. N. Kuhn, Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 2014, 53, 5828-5837.
[5]
C. Álvarez Galván,; J. Schumann,; M. Behrens,; J. L. G. Fierro,; R. Schlögl,; E. Frei, Reverse water-gas shift reaction at the Cu/ZnO interface: Influence of the Cu/Zn ratio on structure-activity correlations. Appl. Catal. B: Environ. 2016, 195, 104-111.
[6]
M. D. Porosoff,; B. H Yan,; J. G. Chen, Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62-73.
[7]
J. Schumann,; M. Eichelbaum,; T. Lunkenbein,; N. Thomas,; M. C. Álvarez Galván,; R. Schlögl,; M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts. ACS Catal. 2015, 5, 3260-3270.
[8]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[9]
M. Ding,; R. W. Flaig,; H. L. Jiang,; O. M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[10]
P. G. Boyd,; A. Chidambaram,; E. García-Díez,; C. P. Ireland,; T. D. Daff,; R. Bounds,; A. Gładysiak,; P. Schouwink,; S. M. Moosavi,; M. M. Maroto-Valer, et al. Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature 2019, 576, 253-256.
[11]
C. S. Diercks,; Y. Z. Liu,; K. E. Cordova,; O. M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301-307.
[12]
P. T. K. Nguyen,; H. T. D. Nguyen,; H. N. Nguyen,; C. A. Trickett,; Q. T. Ton,; E. Gutiérrez-Puebla,; M. A. Monge,; K. E. Cordova,; F. Gándara, New metal-organic frameworks for chemical fixation of CO2. ACS Appl. Mater. Interfaces 2018, 10, 733-744.
[13]
S. Dang,; Q. L. Zhu,; Q. Xu, Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2018, 3, 17075.
[14]
E. H. Zhang,; T. Wang,; K. Yu,; J. Liu,; W. X. Chen,; A. Li,; H. P. Rong,; R. Lin,; S. F. Ji,; X. S. Zheng, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569-16573.
[15]
Y. S. Wu,; Z. Huang,; H. Q. Jiang,; C. Wang,; Y. Zhou,; W. Shen,; H. L. Xu,; H. X. Deng, Facile synthesis of uniform metal carbide nanoparticles from metal-organic frameworks by laser metallurgy. ACS Appl. Mater. Interfaces 2019, 11, 44573-44581.
[16]
H. Q. Jiang,; S. Y. Jin,; C. Wang,; R. Q. Ma,; Y. Y. Song,; M. Y. Gao,; X. T. Liu,; A. G. Shen,; G. J. Cheng,; H. X. Deng, Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 2019, 141, 5481-5489.
[17]
C. Castillo-Blas,; V. A. de la Peña-O’Shea,; I. Puente-Orench,; J. R. de Paz,; R. Sáez-Puche,; E. Gutiérrez-Puebla,; F. Gándara,; Á. Monge, Addressed realization of multication complex arrangements in metal-organic frameworks. Sci. Adv. 2017, 3, e1700773.
[18]
C. Castillo-Blas,; N. López-Salas,; M. C. Gutiérrez,; I. Puente-Orench,; E. Gutiérrez-Puebla,; M. L. Ferrer,; M. Á. Monge,; F. Gándara, Encoding metal-cation arrangements in metal-organic frameworks for programming the composition of electrocatalytically active multimetal oxides. J. Am. Chem. Soc. 2019, 141, 1766-1774.
[19]
L. M. Peng,; J. M. Cowley, EELS analysis of surface-channelled electrons. Surf. Sci. 1988, 204, 555-567.
[20]
M. D. Abràmoff,; P. J. Magalhães,; S. J. Ram, Image processing with ImageJ. Biophoton. Int. 2004, 11, 36-42.
[21]
J. Häglund,; A. Fernández Guillermet,; G. Grimvall,; M. Körling, Theory of bonding in transition-metal carbides and nitrides. Phys. Rev. B 1993, 48, 11685-11691.
[22]
M. J. Radler,; J. B. Cohen,; G. P. Sykora,; T. Mason,; D. E. Ellis,; J., Faber, Jr. The defect structures of Mn1-XO. J. Phys. Chem. Solids 1992, 53, 141-154.
[23]
D. Richard,; M. Ferrand,; G. J. Kearley, Analysis and visualisation of neutron-scattering data. J. Neutron Res. 1996, 4, 33-39.
[24]
Accelrys Inc. BIOVIA Materials Studio. http://Accelrys.Com/materials-studio (accessed Feb 1, 2020).
[25]
O. A. Bulavchenko,; E. Y. Gerasimov,; T. N. Afonasenko, Reduction of double manganese-cobalt oxides: In situ XRD and TPR study. Dalt. Trans. 2018, 47, 17153-17159.
[26]
L. H. Wang,; H. Liu,; Y. Chen,; S. Q. Yang, Reverse water-gas shift reaction over Co-precipitated Co-CeO2 catalysts: Effect of Co content on selectivity and carbon formation. Int. J. Hydrogen Energy 2017, 42, 3682-3689.
[27]
B. C. Dai,; G. L. Zhou,; S. B. Ge,; H. M. Xie,; Z. J. Jiao,; G. Z. Zhang,; K. Xiong, CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts. Can. J. Chem. Eng. 2017, 95, 634-642.
[28]
A. Aitbekova,; E. D. Goodman,; L. H. Wu,; A. Boubnov,; A. S. Hoffman,; A. Genc,; H. K. Cheng,; L. Casalena,; S. R. Bare,; M. Cargnello, Engineering of ruthenium-iron oxide colloidal heterostructures: Improved yields in CO2 hydrogenation to hydrocarbons. Angew. Chem., Int. Ed. 2019, 58, 17451-17457.
[29]
A. Okemoto,; M. R. Harada,; T. Ishizaka,; N. Hiyoshi,; K. Sato, Catalytic performance of MoO3/FAU zeolite catalysts modified by Cu for reverse water gas shift reaction. Appl. Catal. A Gen. 2020, 592, 117415.
[30]
P. Gao,; S. G. Li,; X. N. Bu,; S. S. Dang,; Z. Y. Liu,; H. Wang,; L. S. Zhong,; M. H. Qiu,; C. G. Yang,; J. Cai, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017, 9, 1019-1024.
[31]
H. T. Xu,; Y. S. Li,; X. K. Luo,; Z. L. Xu,; J. P. Ge, Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction. Chem. Commun. 2017, 53, 7953-7956.
[32]
C. T. Wang,; E. J. Guan,; L. Wang,; X. F. Chu,; Z. Y. Wu,; J. Zhang,; Z. Y. Yang,; Y. W. Jiang,; L. Zhang,; X. J. Meng, et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482-8488.
[33]
Y. Q. Han,; H. T. Xu,; Y. Q. Su,; Z. L. Xu,; K. F. Wang,; W. Z. Wang, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70-78.
[34]
W. L. Vrijburg,; E. Moioli,; W. Chen,; M. Zhang,; B. J. P. Terlingen,; B. Zijlstra,; I. A. W. Filot,; A. Züttel,; E. A. Pidko,; E. J. M. Hensen, Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catal. 2019, 9, 7823-7839.
[35]
E. Junca,; J. R. de Oliveira,; T. A. G. Restivo,; D. C. R. Espinosa,; J. A. S. Tenório, Synthetic zinc ferrite reduction by means of mixtures containing hydrogen and carbon monoxide. J. Therm. Anal. Calorim. 2016, 123, 631-641.
[36]
R. N. C. de Siqueira,; E. de Albuquerque Brocchi,; P. F. de Oliveira,; M. S. Motta, Hydrogen reduction of zinc and iron oxides containing mixtures. Metall. Mater. Trans. B 2014, 45, 66-75.
[37]
V. R. Galakhov,; M. Demeter,; S. Bartkowski,; M. Neumann,; N. A. Ovechkina,; E. Z. Kurmaev,; N. I. Lobachevskaya,; Y. M. Mukovskii,; J. Mitchell,; D. L. Ederer, Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 2002, 65, 113102.
[38]
M. C. Álvarez-Galván,; V. A. de la Peña O’Shea,; G. Arzamendi,; B. Pawelec,; L. M. Gandía,; J. L. G. Fierro, Methyl ethyl ketone combustion over La-transition metal (Cr, Co, Ni, Mn) perovskites. Appl. Catal. B: Environ. 2009, 92, 445-453.
[39]
L. Xu,; Q. Q. Jiang,; Z. H. Xiao,; X. Y. Li,; J. Huo,; S. Y. Wang,; L. M. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[40]
V. A. de la Peña O’Shea,; M. C. Álvarez-Galván,; J. M. Campos-Martin,; N. N. Menéndez,; J. D. Tornero,; J. L. G. Fierro, Surface and structural features of Co-Fe oxide nanoparticles deposited on a silica substrate. Eur. J. Inorg. Chem. 2006, 2006, 5057-5068.
[41]
C. A. F. Vaz,; D. Prabhakaran,; E. I. Altman,; V. E. Henrich, Experimental study of the interfacial cobalt oxide in Co3O4/αAl2O3 (0001) epitaxial films. Phys. Rev. B 2009, 80, 155457.
[42]
W. Wang,; S. P. Wang,; X. B. Ma,; J. L. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703-3727.
[43]
Y. K. Jin,; G. H. Sun,; Z. M. Wang,; H. B. Pan,; L. S. Xu,; H. Xu,; W. X. Huang, Elementary surface reactions on Co(0001) under Fischer-Tropsch synthesis conditions. J. Phys. Chem. C 2017, 121, 21535-21540.
[44]
G. A. Beitel,; C. P. M. de Groot,; H. Oosterbeek,; J. H. Wilson, A combined in-situ PM-RAIRS and kinetic study of single-crystal cobalt catalysts under synthesis gas at pressures up to 300 Mbar. J. Phys. Chem. B 1997, 101, 4035-4043.
Nano Research
Pages 493-500
Cite this article:
Castillo-Blas C, Álvarez-Galván C, Puente-Orench I, et al. Highly efficient multi-metal catalysts for carbon dioxide reduction prepared from atomically sequenced metal organic frameworks. Nano Research, 2021, 14(2): 493-500. https://doi.org/10.1007/s12274-020-2813-x
Topics:

850

Views

15

Crossref

N/A

Web of Science

17

Scopus

2

CSCD

Altmetrics

Received: 21 February 2020
Revised: 05 April 2020
Accepted: 14 April 2020
Published: 11 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return