AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

NIR-II driven plasmon-enhanced cascade reaction for tumor microenvironment-regulated catalytic therapy based on bio-breakable Au-Ag nanozyme

Min Xu1Qianglan Lu1Yiling Song1Lifang Yang1Chuchu Ren1Wen Li1Ping Liu1Yule Wang2,3Yan Zhu2,3Nan Li1( )
Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
Show Author Information

Graphical Abstract

Abstract

Emerging nanozymes with natural enzyme-mimicking catalytic activities have inspired extensive research interests due to their high stability, low cost, and simple preparation, especially in the field of catalytic tumor therapy. Here, bio-breakable nanozymes based on glucose-oxidase (GOx)-loaded biomimetic Au-Ag hollow nanotriangles (Au-Ag-GOx HTNs) are designed, and they trigger an near-infrared (NIR)-II-driven plasmon-enhanced cascade catalytic reaction through regulating tumor microenvironment (TME) for highly efficient tumor therapy. Firstly, GOx can effectively trigger the generation of gluconic acid (H+) and hydrogen peroxide (H2O2), thus depleting nutrients in the tumor cells as well as modifying TME to provide conditions for subsequent peroxidase (POD)-like activity. Secondly, NIR-II induced surface plasmon resonance can induce hot electrons to enhance the catalytic activity of Au-Ag-GOx HTNs, eventually boosting the generation of hydroxyl radicals (•OH). Interestingly, the generated H2O2 and H+ can simultaneously induce the degradation of Ag nanoprisms to break the intact triangle nanostructure, thus promoting the excretion of Au-Ag-GOx HTNs to avoid the potential risks of drug metabolism. Overall, the NIR-II driven plasmon-enhanced catalytic mechanism of this bio-breakable nanozyme provides a promising approach for the development of nanozymes in tumor therapy.

Electronic Supplementary Material

Download File(s)
12274_2020_2818_MOESM1_ESM.pdf (3.4 MB)

References

[1]
Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 1-12.
[2]
Gao, S. S.; Lin, H.; Zhang, H. X.; Yao, H. L.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 2019, 6, 1801733.
[3]
Li, S. S.; Shang, L.;Xu, B. L.; Wang, S. H.;Gu, K.; Wu, Q. Y.; Sun, Y.; Zhang, Q. H.; Yang, H. L.; Zhang, F. R. et al. A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy.Angew.Chem., Int. Ed. 2019, 58, 12624-12631.
[4]
Wen, M.;Ouyang, J.; Wei, C. W.; Li, H.; Chen, W. S.; Liu, Y. N. Artificial enzyme-catalyzed cascade reactions for antitumor immunotherapy reinforced by NIR-II light. Angew. Chem., Int. Ed. 2019, 58, 17425-17432.
[5]
Wu, J. J.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004-1076.
[6]
Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060-6093.
[7]
Lin, Y. H.;Ren, J. S.;Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Account. Chem. Res. 2014, 47, 1097-1105.
[8]
Pratsinis, A.; Kelesidis, G. A.; Zuercher, S.; Krumeich, F.; Bolisetty, S.; Mezzenga, R.; Leroux, J. C.; Sotiriou, G. A. Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano 2017, 11, 12210-12218.
[9]
Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412-5419.
[10]
Sun, H. J.; Zhou, Y.;Ren, J. S.;Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224-9237.
[11]
Karim, M. N.; Singh, M.; Weerathunge, P.; Bian, P. J.; Zheng, R. K.; Dekiwadia, C.; Ahmed, T.; Walia, S.; Gaspera, E. D.; Singh, S. et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl. Nano Mater. 2018, 1, 1694-1704.
[12]
Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018, 18, 3344-3351.
[13]
Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218-224.
[14]
Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 2016, 8, 22301-22308.
[15]
Fan, J.; Yin, J. J.; Ning, B.; Wu, X. C.; Hu, Y.; Ferrari, M.; Anderson, G. J.; Wei, J. Y.; Zhao, Y. L.; Nie, G. J. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 2011, 32, 1611-1618.
[16]
Jv, Y.; Li, B. X.; Cao, R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017-8019.
[17]
Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651-661.
[18]
Yang, Y.; Chen, M.; Wang, B. Z.; Wang, P.; Liu, Y. C.; Zhao, Y.; Li, K.; Song, G. S.; Zhang, X. B.; Tan, W. H. NIR-II driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxia-induced radiotherapy tolerance. Angew. Chem., Int. Ed. 2019, 58, 15069-15075.
[19]
Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 2009, 48, 2308-2312.
[20]
Wan, Y.; Qi, P.; Zhang, D.; Wu, J. J.; Wang, Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2012, 33, 69-74.
[21]
Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206-2210.
[22]
Guo Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282-1290.
[23]
Fu, L. H.; Hu, Y. R.; Qi, C.; He, T.; Jiang, S. S.; Jiang, C.; He, J.; Qu, J. L.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985-13994.
[24]
Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000-11012.
[25]
He, W. W.; Wu, X. C.; Liu, J. B.; Hu, X. N.; Zhang, K.;Hou, S.; Zhou, W. Y.; Xie, S. S. Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem. Mater. 2010, 22, 2988-2994.
[26]
Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L. H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y. et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc. 2018, 140, 864-867.
[27]
Li, Z. Z.; Bao, S. D.; Wu, Q. L.; Wang, H.; Eyler, C.; Sathornsumetee, S.; Shi, Q.; Cao, Y. T.; Lathia, J.; McLendon, R. E. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009, 15, 501-513.
[28]
Cao, Y.; Wu, T. T.; Zhang, K.; Meng, X. D.; Dai, W. H.; Wang, D. D.; Dong, H. F.; Zhang, X. J. Engineered exosome-mediated near-infrared-II region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 2019, 13, 1499-1510.
[29]
Lin, H.;Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235-16247.
[30]
Li, C. Y.; Li, F.; Zhang, Y. J.; Zhang, W. J.; Zhang, X. E.; Wang, Q. B. Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot. ACS Nano 2015, 9, 12255-12263.
[31]
Sun, M. M.; Qian, H. M.; Liu, J.; Li, Y. C.; Pang, S. P.; Xu, M.; Zhang, J. T. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv. 2017, 7, 7073-7078.
[32]
Guo, X.; Ye, W.; Sun, H. Y.; Zhang, Q.; Yang, J. A dealloying process of core-shell Au@AuAg nanorods for porous nanorods with enhanced catalytic activity. Nanoscale 2013, 5, 12582-12588.
[33]
Zhang, X.; Zhang, G. Y.; Zhang, B. D.; Su, Z. H. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers. Langmuir 2013, 29, 6722-6727.
[34]
Nambara, K.; Niikura, K.; Mitomo, H.; Ninomiya, T.; Takeuchi, C.; Wei, J. J.; Matsuo, Y.; Ijiro, K. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir 2016, 32, 12559-12567.
[35]
Chang, K. W.; Liu, Z. H.; Fang, X. F; Chen, H. B.; Men, X. J.; Yuan, Y.; Sun, K.; Zhang, X. J.; Yuan, Z.; Wu, C. F. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 2017, 17, 4323-4329.
[36]
Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938-1958.
[37]
Zhang, M. K.; Li, C. X.; Wang, S. B.; Liu, T.; Song, X. L.; Yang, X. Q.; Feng, J.; Zhang, X. Z. Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy. Small 2018, 14, 1803602.
[38]
Zhang, C.; Ni, D. L.; Liu, Y. Y.; Yao, H. L.; Bu, W. B.; Shi, J. L. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nat. Nanotech. 2017, 12, 378-386.
[39]
Zhang, Q.; Li, N.;Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011, 133, 18931-18939.
[40]
Zhang, Y. F.; Yang, Y. C.; Jiang, S. S.; Li, F.; Lin, J.; Wang, T. F.; Huang, P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Materials Horizons 2019, 6, 169-175.
[41]
Li, Y.; Zhao, X. J.; Zhang, P. P.; Ning, J.; Li, F.J.; Su, Z. Q.; Wei, G. A facile fabrication of large-scale reduced graphene oxide-silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate.J. Mater. Chem. C. 2015, 3, 4126-4133.
[42]
Fang, X.; Liu, F. J.; Wang, J.; Zhao, H.; Ren, H. X.; Li, Z. X. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphenenanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electro-chemical detection of tumor biomarker. Biosens. Bioelectron. 2017, 97, 218-225.
[43]
Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954-1966.
[44]
Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenidenanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560-2566.
Nano Research
Pages 2118-2129
Cite this article:
Xu M, Lu Q, Song Y, et al. NIR-II driven plasmon-enhanced cascade reaction for tumor microenvironment-regulated catalytic therapy based on bio-breakable Au-Ag nanozyme. Nano Research, 2020, 13(8): 2118-2129. https://doi.org/10.1007/s12274-020-2818-5
Topics:

725

Views

25

Crossref

N/A

Web of Science

23

Scopus

2

CSCD

Altmetrics

Received: 21 February 2020
Revised: 08 April 2020
Accepted: 17 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return