Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode

Ben Liu1,§Danni Lei2,§Jin Wang1Qingfei Zhang1Yinggan Zhang1Wei He1Hongfei Zheng1Baisheng Sa3Qingshui Xie1Dong-Liang Peng1Baihua Qu1()
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Fujian Key Laboratory of Materials Genome, College of Materials, Xiamen University, Xiamen 361005, China
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China

§ Ben Liu and Danni Lei contributed equally to this paper.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Sodium metal batteries are arousing extensive interest owing to their high energy density, low cost and wide resource. However, the practical development of sodium metal batteries is inherently plagued by the severe volume expansion and the dendrite growth of sodium metal anode during long cycles under high current density. Herein, a simple electrospinning method is applied to construct the uniformly nitrogen-doped porous carbon fiber skeleton and used as three-dimensional (3D) current collector for sodium metal anode, which has high specific surface area (1,098 m2/g) and strong binding to sodium metal. As a result, nitrogen-doped carbon fiber current collector shows a low sodium deposition overpotential and a highly stable cyclability for 3,500 h with a high coulombic effciency of 99.9% at 2 mA/cm2 and 2 mAh/cm2. Moreover, the full cells using carbon coated sodium vanadium phosphate as cathode and sodium pre-plated nitrogen-doped carbon fiber skeleton as hybrid anode can stably cycle for 300 times. These results illustrate an effective strategy to construct a 3D uniformly nitrogen-doped carbon skeleton based sodium metal hybrid anode without the formation of dendrites, which provide a prospect for further development and research of high performance sodium metal batteries.

Electronic Supplementary Material

Download File(s)
12274_2020_2820_MOESM1_ESM.pdf (4.7 MB)

References

[1]
Hu, Y. S.; Lu, Y. X. 2019 nobel prize for the Li-ion batteries and new opportunities and challenges in Na-ion batteries. ACS Energy Lett. 2019, 4, 2689-2690.
[2]
Pan, J.; Chen, S. L.; Zhang, D. P.; Xu, X. N.; Sun, Y. W.; Tian, F.; Gao, P.; Yang, J. SnP2O7 covered carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804672.
[3]
Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604-1612.
[4]
Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608-2612.
[5]
Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
[6]
Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C. Y.; Janek, J.; Schroder, D.; Wang, G. X. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater., in press, .
[7]
Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416-5460.
[8]
Zheng, X. Y.; Bommier, C.; Luo, W.; Jiang, L. H.; Hao, Y. N.; Huang, Y. H. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater. 2019, 16, 6-23.
[9]
Zhao, C. L.; Lu, Y. X.; Yue, J. M.; Pan, D.; Qi, Y. R.; Hu, Y. S.; Chen, L. Q. Advanced Na metal anodes. J. Energy Chem. 2018, 27, 1584-1596.
[10]
Lei, D. N.; He, Y. B.; Huang, H. J.; Yuan, Y. F.; Zhong, G. M.; Zhao, Q.; Hao, X. G.; Zhang, D. F.; Lai, C.; Zhang, S. W. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244.
[11]
Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem., Int. Ed. 2019, 58, 8024-8028.
[12]
Sun, H.; Zhu, G. Z.; Xu, X. T.; Liao, M.; Li, Y. Y.; Angell, M.; Gu, M.; Zhu, Y. M.; Hung, W. H.; Li, J. C. et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nat. Commun. 2019, 10, 3302.
[13]
Yu, Q. P.; Lu, Q. W.; Qi, X. G.; Zhao, S. Y.; He, Y. B.; Liu, L. L.; Li, J.; Zhou, D.; Hu, Y. S.; Yang, Q. H. et al. Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anodes. Energy Storage Mater. 2019, 23, 610-616.
[14]
Liu, L. L.; Qi, X. G.; Yin, S. J.; Zhang, Q. Q.; Liu, X. Z.; Suo, L. M.; Li, H.; Chen, L. Q.; Hu, Y. S. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 2019, 4, 1650-1657.
[15]
Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449-455.
[16]
Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 2017, 7, 1601526.
[17]
Tian, H. Z.; Seh, Z. W.; Yan, K.; Fu, Z. H.; Tang, P.; Lu, Y. Y.; Zhang, R. F.; Legut, D.; Cui, Y.; Zhang, Q. F. Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes. Adv. Energy Mater. 2017, 7, 1602528.
[18]
Li, T.; Shi, P.; Zhang, R.; Liu, H.; Cheng, X. B.; Zhang, Q. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Res. 2019, 12, 2224-2229.
[19]
Luo, W.; Zhang, Y.; Xu, S. M.; Dai, J. Q.; Hitz, E.; Li, Y. J.; Yang, C. P.; Chen, C. J.; Liu, B. Y.; Hu, L. B. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 2017, 17, 3792-3797.
[20]
Wang, A. X.; Hu, X. F.; Tang, H. Q.; Zhang, C. Y.; Liu, S.; Yang, Y. W.; Yang, Q. H.; Luo, J. Y. Processable and moldable sodium-metal anodes. Angew. Chem., Int. Ed. 2017, 56, 11921-11926.
[21]
Zhang, A. Y.; Fang, X.; Shen, C. F.; Liu, Y. H.; Zhou, C. W. A carbon nanofiber network for stable lithium metal anodes with high coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428-3436.
[22]
Zheng, X. Y.; Yang, W. J.; Wang, Z. Q.; Huang, L. Q.; Geng, S.; Wen, J. Y.; Luo, W.; Huang, Y. H. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy 2020, 69, 104387.
[23]
Zheng, X. Y.; Li, P.; Cao, Z.; Luo, W.; Sun, F. Z.; Wang, Z. Q.; Ding, B.; Wang, G. X.; Huang, Y. H. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small 2019, 15, 1902688.
[24]
Chu, C. X.; Wang, N. N.; Li, L. L.; Lin, L. D.; Tian, F.; Li, Y. L.; Yang, J.; Dou, S. X.; Qian, Y. T. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes. Energy Storage Mater. 2019, 23, 137-143.
[25]
Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511-515.
[26]
Sand, H. J. S. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 1, 45-79.
[27]
Tang, S.; Zhang, Y. Y.; Zhang, X. G.; Li, J. T.; Wang, X. Y.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase. Adv. Mater. 2019, 31, 1807495.
[28]
Zhu, M. Q.; Li, S. M.; Li, B.; Gong, Y. J.; Du, Z. G.; Yang, S. B. Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 2019, 5, eaau6264.
[29]
Wang, Z. H.; Li, M. K.; Ruan, C. Q.; Liu, C. J.; Zhang, C.; Xu, C.; Edström, K.; Strømme, M.; Nyholm, L. Conducting polymer paper-derived mesoporous 3D N-doped carbon current collectors for Na and Li metal anodes: A combined experimental and theoretical study. J. Phys. Chem. C 2018, 122, 23352-23363.
[30]
Li, P. R.; Xu, T. H.; Ding, P.; Deng, J.; Zha, C. Y.; Wu, Y. L.; Wang, Y. Y.; Li, Y. G. Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Mater. 2018, 15, 8-13.
[31]
Chi, S. S.; Qi, X. G.; Hu, Y. S.; Fan, L. Z. 3D flexible carbon felt host for highly stable sodium metal anodes. Adv. Energy Mater. 2018, 8, 1702764.
[32]
Ye, L.; Liao, M.; Zhao, T. C.; Sun, H.; Zhao, Y.; Sun, X. M.; Wang, B. J.; Peng, H. S. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew. Chem., Int. Ed. 2019, 58, 17054-17060.
[33]
Zheng, Z. J.; Zeng, X. X.; Ye, H.; Cao, F. F.; Wang, Z. B. Nitrogen and oxygen Co-doped graphitized carbon fibers with sodiophilic-rich sites guide uniform sodium nucleation for ultrahigh-capacity sodium-metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 30417-30425.
[34]
Zhao, Y.; Yang, X. F.; Kuo, L. Y.; Kaghazchi, P.; Sun, Q.; Liang, J. N.; Wang, B. Q.; Lushington, A.; Li, R. Y. Zhang, H. M. et al. High capacity, dendrite-free growth, and minimum volume change Na metal anode. Small 2018, 14, 1703717.
[35]
Sun, B.; Li, P.; Zhang, J. Q.; Wang, D.; Munroe, P.; Wang, C. Y.; Notten, P. H. L.; Wang, G. X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 2018, 30, 1801334.
[36]
Wang, E. H.; Chen, M. Z.; Liu, X. H.; Liu, Y. M.; Guo, H. P.; Wu, Z. G.; Xiang, W.; Zhong, B. H.; Guo, X. D.; Chou, S. L. et al. Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode. Small Methods 2019, 3, 1800169.
[37]
Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[38]
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[39]
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[40]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[41]
Cheng, X. B.; Zhao, M. Q.; Chen, C.; Pentecost, A.; Maleski, K.; Mathis, T.; Zhang, X. Q.; Zhang, Q.; Jiang, J. J.; Gogotsi, Y. Nanodiamonds suppress the growth of lithium dendrites. Nat. Commun. 2017, 8, 336.
[42]
Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653-658.
[43]
Morita, K.; Murata, Y.; Ishitani, A.; Murayama, K.; Ono, T.; Nakajima, A. Characterization of commercially available PAN (polyacrylonitri1e)-based carbon fibers. Pure Appl. Chem. 1986, 58, 455-468.
[44]
Ye, H.; Wang, C. Y.; Zuo, T. T.; Wang, P. F.; Yin, Y. X.; Zheng, Z. J.; Wang, P.; Cheng, J.; Cao, F. F.; Guo, Y. G. Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. Nano Energy 2018, 48, 369-376.
[45]
Yoon, H. J.; Hong, S. K.; Lee, M. E.; Hwang, J.; Jin, H. J.; Yun, Y. S. Sulfur-doped carbon nanotemplates for sodium metal anodes. ACS Appl. Energy Mater. 2018, 1, 1846-1852.
[46]
Kharissova, O. V.; Kharisov, B. I. Variations of interlayer spacing in carbon nanotubes. RSC Adv. 2014, 4, 30807-30815.
[47]
Wang, S.; Chen, Z. H.; Ma, W. J.; Ma, Q. S. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber. Ceram. Int. 2006, 32, 291-295.
[48]
Ko, T. H. Raman spectrum of modified PAN-based carbon fibers during graphitization. J. Appl. Polym. Sci. 1996, 59, 577-580.
[49]
Lee, K. S.; Lee, W. J.; Park, N. G.; Kim, S. O.; Park, J. H. Transferred vertically aligned N-doped carbon nanotube arrays: Use in dye-sensitized solar cells as counter electrodes. Chem. Commun. 2011, 47, 4264-4266.
[50]
Wang, Y. Q.; Fugetsu, B.; Wang, Z. P.; Gong, W.; Sakata, I.; Morimoto, S.; Hashimoto, Y.; Endo, M.; Dresselhaus, M.; Terrones, M. Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci. Rep. 2017, 7, 40259.
[51]
Weidenthaler, C.; Lu, A. H.; Schmidt, W.; Schüth, F. X-ray photoelectron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC). Microp. Mesop. Mater. 2006, 88, 238-243.
[52]
Tang, S.; Qiu, Z.; Wang, X. Y.; Gu, Y.; Zhang, X. G.; Wang, W. W.; Yan, J. W.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 2018, 48, 101-106.
Nano Research
Pages 2136-2142
Cite this article:
Liu B, Lei D, Wang J, et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Research, 2020, 13(8): 2136-2142. https://doi.org/10.1007/s12274-020-2820-y
Topics:
Metrics & Citations  
Article History
Copyright
Return