Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity

Ai-Qian Wu1Wen-Qing Wang1Hong-Bin Zhan1Lin-An Cao2Xiao-Liang Ye2Jia-Jia Zheng3Pendyala Naresh Kumar2Kashi Chiranjeevulu2Wei-Hua Deng2Guan-E Wang2Ming-Shui Yao2,3()Gang Xu2()
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

In this paper, a dual-ligand design strategy is demonstrated to modulate the performance of the electronically conductive metal-organic frameworks (EC-MOFs) thin film with a spray layer-by-layer assembly method. The thin film not only can be precisely prepared in nanometer scale (20-70 nm), but also shows the pin-hole-free smooth surface. The high quality nano-film of 2,3,6,7,10,11-hexaiminotriphenylene (HITP) doped Cu-HHTP enables the precise modulation of the chemiresistive sensitivity and selectivity. Selectivity improvement over 220% were realized for benzene vs. NH3, as well as enhanced response and recovery properties. In addition, the selectivity of the EC-MOF thin film sensors toward other gases (e.g. triethylamine, methane, ethylbenzene, hydrogen, butanone, and acetone) vs. NH3 at room temperature is also discussed.

Electronic Supplementary Material

Download File(s)
12274_2020_2823_MOESM1_ESM.pdf (3.4 MB)

References

[1]
T. Kambe,; R. Sakamoto,; K. Hoshiko,; K. Takada,; M. Miyachi,; J. H. Ryu,; S. Sasaki,; J. Kim,; K. Nakazato,; M. Takata, et al. π-conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 2013, 135, 2462-2465.
[2]
A. J. Clough,; J. M. Skelton,; C. A. Downes,; A. A. De La Rosa,; J. W. Yoo,; A. Walsh,; B. C. Melot,; S. C. Marinescu, Metallic conductivity in a two-dimensional cobalt dithiolene metal-organic framework. J. Am. Chem. Soc. 2017, 139, 10863-10867.
[3]
W. T. Koo,; J. S. Jang,; I. D. Kim, Metal-organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938-1963.
[4]
R. H. Dong,; P. Han,; H. Arora,; M. Ballabio,; M. Karakus,; Z. Zhang,; C. Shekhar,; P. Adler,; P. S. Petkov,; A. Erbe, et al. High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 2018, 17, 1027-1032.
[5]
M. S. Yao,; J. J. Zheng,; A. Q. Wu,; G. Xu,; S. S. Nagarkar,; G. Zhang,; M. Tsujimoto,; S. Sakaki,; S. Horike,; K. Otake, et al. A dual-ligand porous coordination polymer chemiresistor with modulated conductivity and porosity. Angew. Chem., Int. Ed. 2020, 59, 172-176.
[6]
M. Hmadeh,; Z. Lu,; Z. Liu,; F. Gándara,; H. Furukawa,; S. Wan,; V. Augustyn,; R. Chang,; L. Liao,; F. Zhou, et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511-3513.
[7]
X. Huang,; P. Sheng,; Z. Y. Tu,; F. J. Zhang,; J. H. Wang,; H. Geng,; Y. Zou,; C. A. Di,; Y. P. Yi,; Y. M. Sun, et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 2015, 6, 7408.
[8]
S. Takaishi,; M. Hosoda,; T. Kajiwara,; H. Miyasaka,; M. Yamashita,; Y. Nakanishi,; Y. Kitagawa,; K. Yamaguchi,; A. Kobayashi,; H. Kitagawa, Electroconductive porous coordination polymer Cu[Cu(pdt)2] composed of donor and acceptor building units. Inorg. Chem. 2009, 48, 9048-9050.
[9]
K. J. Erickson,; F. Léonard,; V. Stavila,; M. E. Foster,; C. D. Spataru,; R. E. Jones,; B. M. Foley,; P. E. Hopkins,; M. D. Allendorf,; A. A. Talin, Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity. Adv. Mater. 2015, 27, 3453-3459.
[10]
S. S. Park,; E. R. Hontz,; L. Sun,; C. H. Hendon,; A. Walsh,; T. Van Voorhis,; M. Dinca, Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 1774-1777.
[11]
L. E. Darago,; M. L. Aubrey,; C. J. Yu,; M. I. Gonzalez,; J. R. Long, Electronic conductivity, ferrimagnetic ordering, and reductive insertion mediated by organic mixed-valence in a ferric semiquinoid metal-organic framework. J. Am. Chem. Soc. 2015, 137, 15703-15711.
[12]
R. H. Dong,; Z. T. Zhang,; D. C. Tranca,; S. Q. Zhou,; M. C. Wang,; P. Adler,; Z. Q. Liao,; F. Liu,; Y. Sun,; W. J. Shi, et al. A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nat. Commun. 2018, 9, 2637.
[13]
M. Ko,; L. Mendecki,; K. A. Mirica, Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun. 2018, 54, 7873-7891.
[14]
R. H. Dong,; T. Zhang,; X. L. Feng, Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.
[15]
E. M. Miner,; T. Fukushima,; D. Sheberla,; L. Sun,; Y. Surendranath,; M. Dincă, Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942.
[16]
D. Sheberla,; J. C. Bachman,; J. S. Elias,; C. J. Sun,; Y. Shao-Horn,; M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220-224.
[17]
D. W. Feng,; T. Lei,; M. R. Lukatskaya,; J. Park,; Z. H. Huang,; M. Lee,; L. Shaw,; S. C. Chen,; A. A. Yakovenko,; A. Kulkarni, et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 2018, 3, 30-36.
[18]
J. Su,; W. He,; X. M. Li,; L. Sun,; H. Y. Wang,; Y. Q. Lan,; M. N. Ding,; J. L. Zuo, High electrical conductivity in a 2D MOF with intrinsic superprotonic conduction and interfacial pseudo-capacitance. Matter 2020, 2, 711-722.
[19]
J. Wu,; J. H. Chen,; C. Wang,; Y. Zhou,; K. Ba,; H. Xu,; W. Z. Bao,; X. H. Xu,; A. Carlsson,; S. Lazar, et al. Metal-organic framework for transparent electronics. Adv. Sci. 2020, 7, 1903003.
[20]
M. S. Yao,; X. J. Lv,; Z. H. Fu,; W. H. Li,; W. H. Deng,; G. D. Wu,; G. Xu, Layer-by-layer assembled conductive metal-organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem., Int. Ed. 2017, 56, 16510-16514.
[21]
M. G. Campbell,; D. Sheberla,; S. F. Liu,; T. M. Swager,; M. Dincă, Cu3(hexaiminotriphenylene)2: An electrically conductive 2D metal-organic framework for chemiresistive sensing. Angew. Chem., Int. Ed. 2015, 127, 4423-4426.
[22]
M. S. Yao,; J. W. Xiu,; Q. Q. Huang,; W. H. Li,; W. W. Wu,; A. Q. Wu,; L. A. Cao,; W. H. Deng,; G. E. Wang,; G. Xu, Van der waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915-14919.
[23]
Z. Meng,; A. Aykanat,; K. A. Mirica, Welding metallophthalocyanines into bimetallic molecular meshes for ultrasensitive, low-power chemiresistive detection of gases. J. Am. Chem. Soc. 2018, 141, 2046-2053.
[24]
G. D. Wu,; J. H. Huang,; Y. Zang,; J. He,; G. Xu, Porous field-effect transistors based on a semiconductive metal-organic framework. J. Am. Chem. Soc. 2016, 139, 1360-1363.
[25]
Q. Q. Mu,; W. Zhu,; X. Li,; C. F. Zhang,; Y. H. Su,; Y. B. Lian,; P. W. Qi,; Z. Deng,; D. Zhang,; S. Wang, et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal. B Environ. 2020, 262, 118144.
[26]
C. Y. Xu,; Y. T. Pan,; G. Wan,; H. Liu,; L. Wang,; H. Zhou,; S. H. Yu,; H. L. Jiang, Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 2019, 141, 19110-19117.
[27]
H. Q. Jiang,; X. C. Liu,; Y. S. Wu,; Y. F. Shu,; X. Gong,; F. S. Ke,; H. X. Deng, Metal-organic frameworks for high charge-discharge rates in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 3916-3921.
[28]
Z. Meng,; R. M. Stolz,; L. Mendecki,; K. A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 2019, 119, 478-598.
[29]
L. Sun,; M. G. Campbell,; M. Dincă, Electrically conductive porous metal-organic frameworks. Angew. Chem., Int. Ed. 2016, 55, 3566-3579.
[30]
S. J. Choi,; I. D. Kim, Recent developments in 2D nanomaterials for chemiresistive-type gas sensors. Electron. Mater. Lett. 2018, 14, 221-260.
[31]
M. G. Campbell,; M. Dincă, Metal-organic frameworks as active materials in electronic sensor devices. Sensors 2017, 17, 1108.
[32]
L. L. Guo,; F. Chen,; N. Xie,; X. Y. Kou,; C. Wang,; Y. F. Sun,; F. M. Liu,; X. S. Liang,; Y. Gao,; X. Yan, et al. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem. 2018, 272, 185-194.
[33]
H. Liu,; M. Li,; O. Voznyy,; L. Hu,; Q. Y. Fu,; D. X. Zhou,; Z. Xia,; E. H. Sargent,; J. Tang, Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718-2724.
[34]
Y. Y. Jian,; W. W. Hu,; Z. H. Zhao,; P. F. Cheng,; H. Haick,; M. S. Yao,; W. W. Wu, Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 2020, 12, 71.
[35]
M. S. Yao,; W. X. Tang,; G. E. Wang,; B. Nath,; G. Xu, Mof thin film-coated metal oxide nanowire array: Significantly improved chemiresistor sensor performance. Adv. Mater. 2016, 28, 5229-5234.
[36]
J. Zhang,; X. H. Liu,; G. Neri,; N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795-831.
[37]
H. J. Kim,; J. H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607-627.
[38]
T. M. Li,; W. Zeng,; Z. C. Wang, Quasi-one-dimensional metal-oxide-based heterostructural gas-sensing materials: A review. Sens. Actuators B Chem. 2015, 221, 1570-1585.
[39]
Z. L. Shi,; Y. Tao,; J. S. Wu,; C. Z. Zhang,; H. L. He,; L. L. Long,; Y. Lee,; T. Li,; Y. B. Zhang, Robust metal-triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142, 2750-2754.
[40]
L. Heinke,; C. Wöll, Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 2019, 31, 1806324.
[41]
Y. F. Gu,; Y. N. Wu,; L. C. Li,; W. Chen,; F. T. Li,; S. Kitagawa, Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem., Int. Ed. 2017, 56, 15658-15662.
[42]
O. Shekhah,; K. Hirai,; H. Wang,; H. Uehara,; M. Kondo,; S. Diring,; D. Zacher,; R. A. Fischer,; O. Sakata,; S. Kitagawa, et al. MOF-on-MOF heteroepitaxy: Perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Trans. 2011, 40, 4954-4958.
[43]
J. J. Richardson,; M. Björnmalm,; F. Caruso, Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.
[44]
W. H. Li,; K. Ding,; H. R. Tian,; M. S. Yao,; B. Nath,; W. H. Deng,; Y. B. Wang,; G. Xu, Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater. 2017, 27, 1702067.
[45]
N. T. Hu,; Z. Yang,; Y. Y. Wang,; L. L. Zhang,; Y. Wang,; X. L. Huang,; H. Wei,; L. M. Wei,; Y. F. Zhang, Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 2013, 25, 025502.
[46]
E. X. Chen,; H. Yang,; J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 2014, 53, 5411-5413.
[47]
M. S. Yao,; Q. H. Li,; G. L. Hou,; C. Lu,; B. L. Cheng,; K. C. Wu,; G. Xu,; F. L. Yuan,; F. Ding,; Y. F. Chen, Dopant-controlled morphology evolution of WO3 polyhedra synthesized by RF thermal plasma and their sensing properties. ACS Appl. Mater. Interfaces 2015, 7, 2856-2866.
[48]
M. S. Yao,; L. A. Cao,; Y. X. Tang,; G. E. Wang,; R. H. Liu,; P. N. Kumar,; G. D. Wu,; W. H. Deng,; W. J. Hong,; G. Xu, Gas transport regulation in a MO/MOF interface for enhanced selective gas detection. J. Mater. Chem. A 2019, 7, 18397-18403.
Nano Research
Pages 438-443
Cite this article:
Wu A-Q, Wang W-Q, Zhan H-B, et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Research, 2021, 14(2): 438-443. https://doi.org/10.1007/s12274-020-2823-8
Topics:
Metrics & Citations  
Article History
Copyright
Return