Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Bioelectronic protein nanowire sensors for ammonia detection

Alexander F. Smith1Xiaomeng Liu2Trevor L. Woodard3Tianda Fu2Todd Emrick4Juan M. Jiménez1,5,6Derek R. Lovley3,6()Jun Yao1,2,6()
Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003, USA
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA
Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA 01003, USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Electronic sensors based on biomaterials can lead to novel green technologies that are low cost, renewable, and eco-friendly. Here we demonstrate bioelectronic ammonia sensors made from protein nanowires harvested from the microorganism Geobacter sulfurreducens. The nanowire sensor responds to a broad range of ammonia concentrations (10 to 106 ppb), which covers the range relevant for industrial, environmental, and biomedical applications. The sensor also demonstrates high selectivity to ammonia compared to moisture and other common gases found in human breath. These results provide a proof-of-concept demonstration for developing protein nanowire based gas sensors for applications in industry, agriculture, environmental monitoring, and healthcare.

Electronic Supplementary Material

Download File(s)
12274_2020_2825_MOESM1_ESM.pdf (1.6 MB)

References

[1]
Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713-720.
[2]
Ritz, C. W.; Fairchild, B. D.; Lacy, M. P. Implications of ammonia production and emissions from commercial poultry facilities: A review. J. Appl. Poult. Res .2004, 13, 684-692.
[3]
van der Eerden, L. J. M.; de Visser, P. H. B.; van Dijk, C. J. Risk of damage to crops in the direct neighbourhood of ammonia sources. Environ. Pollut .1998, 102, 49-53.
[4]
Rigoni, F.; Tognolini, S.; Borghetti, P.; Drera, G.; Pagliara, S.; Goldoni, A.; Sangaletti, L. Environmental monitoring of low-ppb ammonia concentrations based on single-wall carbon nanotube chemiresistor gas sensors: Detection limits, response dynamics, and moisture effects. Procedia Eng. 2014, 87, 716-719.
[5]
Baek, B. H.; Aneja, V. P.; Tong, Q. S. Chemical coupling between ammonia, acid gases, and fine particles. Environ. Pollut .2004, 129, 89-98.
[6]
Kharitonov, S. A.; Barnes, P. J. Biomarkers of some pulmonary diseases in exhaled breath. Biomarkers 2002, 7, 1-32.
[7]
Bayrakli, I.; Turkmen, A.; Akman, H.; Sezer, M. T.; Kutluhan, S. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: Chronic kidney disease, epilepsy. J. Biomed. Opt .2016, 21, 87004.
[8]
Davies, S.; Spanel, P.; Smith, D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int .1997, 52, 223-228.
[9]
Hibbard, T.; Killard, A. J. Breath ammonia levels in a normal human population study as determined by photoacoustic laser spectroscopy. J. Breath Res .2011, 5, 037101.
[10]
Bevc, S.; Mohorko, E.; Kolar, M.; Brglez, P.; Holobar, A.; Kniepeiss, D.; Podbregar, M.; Piko, N.; Hojs, N.; Knehtl, M. et al. Measurement of breath ammonia for detection of patients with chronic kidney disease. Clin. Nephrol .2017, 88, 14-17.
[11]
Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas .2006, 27, 321-337.
[12]
Mathew, T. L.; Pownraj, P.; Abdulla, S.; Pullithadathil, B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics 2015, 5, 27-60.
[13]
Güntner, A. T.; Righettoni, M.; Pratsinis, S. E. Selective sensing of NH3 by Si-doped-MoO3 for breath analysis. Sens. Actuators B: Chem .2016, 223, 266-273.
[14]
Obermeier, J.; Trefz, P.; Happ, J.; Schubert, J. K.; Staude, H.; Fischer, D. C.; Miekisch, W. Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease. PLoS One 2017, 12, e0178745.
[15]
Sawicka, K.; Gouma, P.; Simon, S. Electrospun biocomposite nanofibers for urea biosensing. Sens. Actuators B: Chem .2005, 108, 585-588.
[16]
Narasimhan, L. R.; Goodman, W.; Patel, C. K. N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc. Natl. Acad. Sci. USA 2001, 98, 4617-4621.
[17]
Amano, A.; Yoshida, Y.; Oho, T.; Koga, T. Monitoring ammonia to assess halitosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod .2002, 94, 692-696.
[18]
Turner, A. P. F. Biosensors: Sense and sensibility. Chem. Soc. Rev 2013, 42, 3184-3196.
[19]
Piloto, C.; Mirri, F.; Bengio, E. A.; Notarianni, M.; Gupta, B.; Shafiei, M.; Pasquali, M.; Motta, N. Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant-free dip coating. Sens. Actuators B: Chem .2016, 227, 128-134.
[20]
Bekyarova, E.; Davis, M.; Burch, T.; Itkis, M. E.; Zhao, B.; Sunshine, S.; Haddon, R. C. Chemically functionalized single-walled carbon nanotubes as ammonia sensors. J. Phys. Chem. B .2004, 108, 19717-19720.
[21]
Chopra, S.; Pham, A.; Gaillard, J.; Parker, A.; Rao, A. M. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl. Phys. Lett .2002, 80, 4632-4634.
[22]
Quang, N. H.; Van Trinh, M.; Lee, B. H.; Huh, J. S. Effect of NH3 gas on the electrical properties of single-walled carbon nanotube bundles. Sens. Actuators B: Chem .2006, 113, 341-346.
[23]
Van Hieu, N.; Dung, N. Q.; Tam, P. D.; Trung, T.; Chien, N. D. Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sens. Actuators B: Chem .2009, 140, 500-507.
[24]
Duc Hoa, N.; Van Quy, N.; Suk Cho, Y.; Kim, D. Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application. Phys. Status Solidi 2007, 204, 1820-1824.
[25]
Rigoni, F.; Freddi, S.; Pagliara, S.; Drera, G.; Sangaletti, L.; Suisse, J. M.; Bouvet, M.; Malovichko, A. M.; Emelianov, A. V.; Bobrinetskiy, I. I. Humidity-enhanced sub-ppm sensitivity to ammonia of covalently functionalized single-wall carbon nanotube bundle layers. Nnanotechnology 2017, 28, 255502.
[26]
Fobelets, K.; Panteli, C.; Sydoruk, O.; Li, C. B. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond .2018, 39, 063001.
[27]
In, H. J.; Field, C. R.; Pehrsson, P. E. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 2011, 22, 355501.
[28]
Yang, L.; Lin, H. Y.; Zhang, Z. S.; Cheng, L.; Ye, S. Y.; Shao, M. W. Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sens. Actuators B: Chem .2013, 177, 260-264.
[29]
Schmädicke, C. Silicon nanowire based sensor for highly sensitive and selective detection of ammonia. Ph.D. Dissertation, The Technische Universität Dresden, Dresden, Germany, 2015.
[30]
Betty, C. A.; Choudhury, S.; Girija, K. G. Discerning specific gas sensing at room temperature by ultrathin SnO2 films using impedance approach. Sens. Actuators B: Chem .2012, 173, 781-788.
[31]
Van Hieu, N.; Thuy, L. T. B.; Chien, N. D. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sens. Actuators B: Chem .2008, 129, 888-895.
[32]
Kumar, L.; Rawal, I.; Kaur, A.; Annapoorni, S. Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B: Chem .2017, 240, 408-416.
[33]
Van Tuan, C.; Tuan, M. A.; Van Hieu, N.; Trung, T. Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH3 gas sensor application. Curr. Appl. Phys .2012, 12, 1011-1016.
[34]
Deshpande, N. G.; Gudage, Y. G; Sharma, R.; Vyas, J. C.; Kim, J. B.; Lee, Y. P. Studies on tin oxide-intercalated polyaniline nanocomposite for ammonia gas sensing applications. Sens. Actuators B: Chem .2009, 138, 76-84.
[35]
Tran, Q. T.; Hoa, H. T. M.; Yoo, D. H.; Cuong, T. V.; Hur, S. H.; Chung, J. S.; Kim, E. J.; Klohl, P. A. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens. Actuators B: Chem .2014, 194, 45-50.
[36]
Biskupski, D.; Herbig, B.; Schottner, G.; Moos, R. Nanosized titania derived from a novel sol-gel process for ammonia gas sensor applications. Sens. Actuators B: Chem .2011, 153, 329-334.
[37]
Andre, R. S.; Kwak, D.; Dong, Q. C.; Zhong, W.; Correa, D. S.; Mattoso, L. H. C.; Lei, Y. Sensitive and selective NH₃ monitoring at room temperature using ZnO ceramic nanofibers decorated with poly(styrene sulfonate). Sensors (Basel) 2018, 18, 1058.
[38]
Pang, Z. Y.; Yang, Z. P.; Chen, Y.; Zhang, J. N.; Wang, Q. Q.; Huang, F. L.; Wei, Q. F. A room temperature ammonia gas sensor based on cellulose/TiO2/PANI composite nanofibers. Colloids Surf. A: Physicochem. Eng. Asp .2016, 494, 248-255.
[39]
Lin, Q. Q.; Li, Y.; Yang, M. J. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens. Actuators B: Chem .2012, 173, 139-147.
[40]
Feng, Q. X.; Li, X. G.; Wang, J.; Gaskov, A. M. Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuators B: Chem .2016, 222, 864-870.
[41]
Maity, A.; Raychaudhuri, A. K.; Ghosh, B. High sensitivity NH3 gas sensor with electrical readout made on paper with perovskite halide as sensor material. Sci. Rep .2019, 9, 7777.
[42]
Aba, L.; Yusuf, Y.; Mitrayana; Siswanta, D.; Junaidi; Triyana, K. Sensitivity improvement of ammonia gas sensor based on poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) by employing doping of bromocresol green. J. Nanotechnol .2014, 2014, 864274.
[43]
Rigoni, F.; Drera, G.; Pagliara, S.; Goldoni, A.; Sangaletti, L. High sensitivity, moisture selective, ammonia gas sensors based on single-walled carbon nanotubes functionalized with indium tin oxide nanoparticles. Carbon 2014, 80, 356-363.
[44]
Gouma, P.; Kalyanasundaram, K.; Yun, X.; Stanacevic, M.; Wang, L. S. Nanosensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. J .2010, 10, 49-53.
[45]
Yao, J.; Jin, Z.; Zhong, L.; Natelson, D.; Tour, J. M. Two-terminal nonvolatile memories based on single-walled carbon nanotubes. ACS Nano 2009, 3, 4122-4126.
[46]
Yimit, A.; Itoh, K.; Murabayashi, M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens. Actuators B: Chem .2003, 88, 239-245.
[47]
Lovley, D. R. Electrically conductive pili: Biological function and potential applications in electronics. Curr. Opin. Electrochem .2017, 4, 190-198.
[48]
Lovley, D. R. e-Biologics: Fabrication of sustainable electronics with “green” biological materials. mBio 2017, 8, e00695-17.
[49]
Adhikari, R. Y.; Malvankar, N. S.; Tuominen, M. T.; Lovley, D. R. Conductivity of individual Geobacter pili. RSC Adv .2016, 6, 8354-8357.
[50]
Sun, Y. L.; Tang, H. Y.; Ribbe, A.; Duzhko, V.; Woodard, T. L.; Ward, J. E.; Bai, Y.; Nevin, K. P.; Nonnenmann, S. S.; Russell, T. et al. Conductive composite materials fabricated from microbially produced protein nanowires. Small 2018, 14, 1802624.
[51]
Kumar, A.; Holuszko, M.; Espinosa, D. C. R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl .2017, 122, 32-42.
[52]
Tansel, B. From electronic consumer products to e-wastes: Global outlook, waste quantities, recycling challenges. Environ. Int .2017, 98, 35-45.
[53]
Tan, Y.; Adhikari, R. Y.; Malvankar, N. S.; Ward, J. E.; Woodard, T. L.; Nevin, K. P.; Lovley, D. R. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens yields pili with exceptional conductivity. mBio 2017, 8, e02203-16.
[54]
Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater .2012, 24, 1969-1974.
[55]
Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550-554.
[56]
Cui, S. M.; Pu, H. H.; Wells, S. A.; Wen, Z. H.; Mao, S.; Chang, J. B.; Hersam, M. C.; Chen, C. H. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun .2015, 6, 8632.
[57]
Donarelli, M.; Ottaviano, L. 2D materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 2018, 18, 3638.
[58]
Jian, J. M.; Guo, X. S.; Lin, L. W.; Cai, Q.; Cheng, J.; Li, J. P. Gas-sensing characteristics of dielectrophoretically assembled composite film of oxygen plasma-treated SWCNTs and PEDOT/PSS polymer. Sens. Actuators B: Chem .2013, 178, 279-288.
[59]
Pandey, S.; Nanda, K. K. Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sensors 2016, 1, 55-62.
[60]
Suri, K.; Annapoorni, S.; Sarkar, A. K.; Tandon, R. P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens. Actuators B: Chem .2002, 81, 277-282.
[61]
Bi, H. C.; Yin, K. B.; Xie, X.; Ji, J.; Wan, S.; Sun, L. T.; Terrones, M.; Dresselhaus, M. S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep .2013, 3, 2714.
[62]
Xiao, K.; Malvankar, N. S.; Shu, C. J.; Martz, E.; Lovley, D. R.; Sun, X. Low energy atomic models suggesting a pilus structure that could account for electrical conductivity of Geobacter sulfurreducens pili. Sci. Rep .2016, 6, 23385.
[63]
Feliciano, G. T.; Steidl, R. J.; Reguera, G. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys. Chem. Chem. Phys .2015, 17, 22217-22226.
[64]
Philip, B.; Abraham, J. K.; Chandrasekhar, A.; Varadan, V. K. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater. Struct. 2003, 12, 935-939.
[65]
Li, C.; Zhang, D. H.; Liu, X. L.; Han, S.; Tang, T.; Han, J.; Zhou, C. W. In2O3 nanowires as chemical sensors. Appl. Phys. Lett .20013, 82, 1613.
[66]
Tang, S. B.; Cao, Z. X. Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C 2012, 116, 8778-8791.
[67]
Malvankar, N. S.; Vargas, M.; Nevin, K. P.; Franks, A. E.; Leang, C.; Kim, B. C.; Inoue, K.; Mester, T.; Covalla, S. F.; Johnson, J. P. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol .2011, 6, 573-579.
[68]
Lechner, B. A. J.; Kim, Y.; Feibelman, P. J.; Henkelman, G.; Kang, H.; Salmeron, M. Solvation and reaction of ammonia in molecularly thin water films. J. Phys. Chem. C 2015, 119, 23052-23058.
[69]
Lim, D. W.; Sadakiyo, M.; Kitagawa, H. Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem. Sci .2019, 10, 16-33.
[70]
Ueki, T.; Walker, D. J. F.; Woodard, T. L.; Nevin, K. P.; Nonnenmann, S. S.; Lovley, D. R. An escherichia coli chassis for production of electrically conductive protein nanowires. ACS Synth. Biol .2020, 9, 647-654.
[71]
Yin, B.; Liu, X. M.; Gao, H. Y.; Fu, T. D.; Yao, J. Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nat. Commun .2018, 9, 5161.
[72]
Ueki, T.; Walker, D. J. F.; Tremblay, P. L.; Nevin, K. P.; Ward, J. E.; Woodard, T. L.; Nonnenmann, S. S.; Lovley, D. R. Decorating microbially produced protein nanowires with peptide ligands. ACS Synth. Biol .2019, 8, 1809-1817.
Nano Research
Pages 1479-1484
Cite this article:
Smith AF, Liu X, Woodard TL, et al. Bioelectronic protein nanowire sensors for ammonia detection. Nano Research, 2020, 13(5): 1479-1484. https://doi.org/10.1007/s12274-020-2825-6
Topics:
Metrics & Citations  
Article History
Copyright
Return