AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex

Lingjie Ren1,§Xiaoxia Chen4,§Chang Feng1,2Lei Ding3Xiaomin Liu3Tianshu Chen1Fan Zhang1Yanli Li3Zhongliang Ma3Bo Tian1( )Xiaoli Zhu1( )
Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China
School of Medical, Shanghai University, Shanghai 200444, China
Lab for Noncoding RNA and Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China

§ Lingjie Ren and Xiaoxia Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

BCL-2 gene as well as its products is recognized as a promising target for the molecular targeted therapy of tumors. However, due to certain defense measures of tumor cells, the therapeutic effect based on the gene silencing of BCL-2 is greatly reduced. Here we fabricate a smart response nucleic acid therapeutic that could silence the gene effectively through a dual-targeted and cascade-enhanced strategy. In brief, nano-graphene oxide (GO), working as a nano-carrier, is loaded with a well-designed DNAzyme, which can target and silence the BCL-2 mRNA. Furthermore, upon binding with the BCL-2 mRNA, the enzymatic activity of the DNAzyme can be initiated, cutting a substrate oligonucleotide to produce an anti-nucleolin aptamer AS1411. Nucleolin, a nucleolar phosphoprotein, is known as a stabilizer of BCL-2 mRNA. Via binding and inactivating the nucleolin, AS1411 can destabilize BCL-2 mRNA. By this means of simultaneously targeting mRNA and its stabilizer in an integrated system, effective silencing of the BCL-2 gene of tumor cells is achieved at both the cellular and in vivo levels. After being dosed with this nucleic acid therapeutic and without any chemotherapeutics, apoptosis of tumor cells at the cellular level and apparent shrinkage of tumors in vivo are observed. By labeling a molecular beacon on the substrate of DNAzyme, visualization of the enzymatic activity as well as the tumor in vivo can be also achieved. Our work presents a pure bio-therapeutic strategy that has positive implications for enhancing tumor treatment and avoiding side effects of chemotherapeutics.

Electronic Supplementary Material

Download File(s)
12274_2020_2826_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Delbridge, A. R. D.; Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 2015, 22, 1071-1080.
[2]
Pettersson, M.; Jernberg-Wiklund, H.; Larsson, L. G.; Sundstrom, C.; Givol, I.; Tsujimoto, Y.; Nilsson, K. Expression of the bcl-2 gene in human multiple myeloma cell lines and normal plasma cells. Blood 1992, 79, 495-502.
[3]
Ma, L. Y.; Han, M.; Keyoumu, Z.; Wang, H.; Keyoumu, S. Immunotherapy of dual-function vector with both immunostimulatory and B-cell lymphoma 2 (Bcl-2)-silencing effects on gastric carcinoma. Med. Sci. Monit. 2017, 23, 1980-1991.
[4]
Du, Y.; Ji, X. K. Bcl-2 down-regulation by small interfering RNA induces Beclin1-dependent autophagy in human SGC-7901 cells. Cell Biol. Int. 2014, 38, 1155-1162.
[5]
Konopleva, M.; Letai, A. BCL-2 inhibition in AML: An unexpected bonus? Blood 2018, 132, 1007-1012.
[6]
Bhola, P. D.; Letai, A. Mitochondria-judges and executioners of cell death sentences. Mol. Cell 2016, 61, 695-704.
[7]
Fesik, S. W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 2005, 5, 876-885.
[8]
Yang, W. Q.; Zhang, Y. RNAi-mediated gene silencing in cancer therapy. Expert Opin. Biol. Ther. 2012, 12, 1495-1504.
[9]
Chen, X. X.; Chen, T. S.; Ren, L. J.; Chen, G. F.; Gao, X. H.; Li, G. X.; Zhu, X. L. Triplex DNA nanoswitch for pH-sensitive release of multiple cancer drugs. ACS Nano 2019, 13, 7333-7344.
[10]
Tai, W. Y.; Li, J. W.; Corey, E.; Gao, X. H. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng. 2018, 2, 326-337.
[11]
Tai, W. Y.; Gao, X. H. Functional peptides for siRNA delivery. Adv. Drug Deliv. Rev. 2017, 110-111, 157-168.
[12]
Karnati, H. K.; Yalagala, R. S.; Undi, R.; Pasupuleti, S. R.; Gutti, R. K. Therapeutic potential of siRNA and DNAzymes in cancer. Tumor Biol. 2014, 35, 9505-9521.
[13]
Liao, Z. X.; Chuang, E. Y.; Lin, C. C.; Ho, Y. C.; Lin, K. J.; Cheng, P. Y.; Chen, K. J.; Wei, H. J.; Sung, H. W. An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J. Control. Release 2015, 208, 42-51.
[14]
Zhang, J. J.; Lan, T.; Lu, Y. Molecular engineering of functional nucleic acid nanomaterials toward in vivo applications. Adv. Healthc. Mater. 2019, 8, 1801158.
[15]
Chen, X. X.; Zhao, J.; Chen, T. S.; Gao, T.; Zhu, X. L.; Li, G. X. Nondestructive analysis of tumor-associated membrane protein integrating imaging and amplified detection in situ based on dual-labeled DNAzyme. Theranostics 2018, 8, 1075-1083.
[16]
Otake, Y.; Soundararajan, S.; Sengupta, T. K.; Kio, E. A.; Smith, J. C.; Pineda-Roman, M.; Stuart, R. K.; Spicer, E. K.; Fernandes, D. J. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 2007, 109, 3069-3075.
[17]
Soundararajan, S.; Chen, W.; Spicer, E. K.; Courtenay-Luck, N.; Fernandes, D. J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008, 68, 2358-2365.
[18]
Ishimaru, D.; Zuraw, L.; Ramalingam, S.; Sengupta, T. K.; Bandyopadhyay, S.; Reuben, A.; Fernandes, D. J.; Spicer, E. K. Mechanism of regulation of bcl-2 mRNA by nucleolin and a plus U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 2010, 285, 27182-27191.
[19]
He, Z. M.; Zhang, P. H.; Li, X.; Zhang, J. R.; Zhu, J. J. A targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery. Sci. Rep. 2016, 6, 22737.
[20]
Oun, R.; Moussa, Y. E.; Wheate, N. J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 6645-6653.
[21]
Lawrie, T. A.; Gillespie, D.; Dowswell, T.; Evans, J.; Erridge, S.; Vale, L.; Kernohan, A.; Grant, R. Long-term neurocognitive and other side effects of radiotherapy, with or without chemotherapy, for glioma. Cochrane Database Syst. Rev. 2019, 8, CD013047.
[22]
Cho, E. A.; Moloney, F. J.; Cai, H.; Au-Yeung, A.; China, C.; Scolyer, R. A.; Yosufi, B.; Raftery, M. J.; Deng, J. Z.; Morton, S. W. et al. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: A phase 1 first-in-human trial (DISCOVER). Lancet 2013, 381, 1835-1843.
[23]
Santoro, S. W.; Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 1997, 94, 4262-4266.
[24]
Wang, H. M.; Chen, Y. Q.; Wang, H.; Liu, X. Q.; Zhou, X.; Wang, F. DNAzyme-loaded metal-organic frameworks (MOFs) for self-sufficient gene therapy. Angew. Chem., Int. Ed. 2019, 58, 7380-7384.
[25]
Qu, X. M.; Yang, F.; Chen, H.; Li, J.; Zhang, H. B.; Zhang, G. J.; Li, L.; Wang, L. H.; Song, S. P.; Tian, Y. et al. Bubble-mediated ultrasensitive multiplex detection of metal ions in three-dimensional DNA nanostructure-encoded microchannels. ACS Appl. Mater. Interfaces 2017, 9, 16026-16034.
[26]
Su, Y. W.; Li, D.; Liu, B. Y.; Xiao, M. S.; Wang, F.; Li, L.; Zhang, X. L.; Pei, H. Rational design of framework nucleic acids for bioanalytical applications. ChemPlusChem 2019, 84, 512-523.
[27]
Xiao, M. S.; Lai, W.; Man, T. T.; Chang, B. B.; Li, L.; Chandrasekaran, A. R.; Pei, H. Rationally engineered nucleic acid architectures for biosensing applications. Chem. Rev. 2019, 119, 11631-11717.
[28]
Bakshi, S. F.; Guz, N.; Zakharchenko, A.; Deng, H.; Tumanov, A. V.; Woodworth, C. D.; Minko, S.; Kolpashchikov, D. M.; Katz, E. Magnetic field-activated sensing of mRNA in living cells. J. Am. Chem. Soc. 2017, 139, 12117-12120.
[29]
Kim, S.; Ryoo, S. R.; Na, H. K.; Kim, Y. K.; Choi, B. S.; Lee, Y.; Kim, D. E.; Min, D. H. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun. 2013, 49, 8241-8243.
[30]
Somasuntharam, I.; Yehl, K.; Carroll, S. L.; Maxwell, J. T.; Martinez, M. D.; Che, P. L.; Brown, M. E.; Salaita, K.; Davis, M. E. Knockdown of TNF-α by DNAzyme gold nanoparticles as an anti-inflammatory therapy for myocardial infarction. Biomaterials 2016, 83, 12-22.
[31]
Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000-7009.
[32]
Feng, L. Z.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011, 6, 317-324.
[33]
Wang, Y.; Li, Z. H.; Hu, D. H.; Lin, C. T.; Li, J. H.; Lin, Y. H. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 2010, 132, 9274-9276.
[34]
Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 2019, 70, 307-321.
[35]
Dam, D. H. M.; Lee, J. H.; Sisco, P. N.; Co, D. T.; Zhang, M.; Wasielewski, M. R.; Odom, T. W. Direct observation of nanoparticle- cancer cell nucleus interactions. ACS Nano 2012, 6, 3318-3326.
[36]
Fan, H. H.; Zhao, Z. L.; Yan, G. B.; Zhang, X. B.; Yang, C.; Meng, H. M.; Chen, Z.; Liu, H.; Tan, W. H. A smart DNAzyme-MnO2 nanosystem for efficient gene silencing. Angew. Chem., Int. Ed. 2015, 54, 4801-4805.
[37]
Bagheri, Z.; Ranjbar, B.; Latifi, H.; Zibaii, M. I.; Moghadam, T. T.; Azizi, A. Spectral properties and thermal stability of AS1411 G-quadruplex. Int. J. Biol. Macromol. 2015, 72, 806-811.
[38]
Butovskaya, E.; Soldà, P.; Scalabrin, M.; Nadai, M.; Richter, S. N. HIV-1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is inhibited by G-quadruplex ligands. ACS Infect. Dis. 2019, 5, 2127-2135.
[39]
Yang, K.; Feng, L. Z.; Liu, Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy. Adv. Drug Deliv. Rev. 2016, 105, 228-241.
[40]
Shi, L.; Mu, C. L.; Gao, T.; Chai, W. X.; Sheng, A. Z.; Chen, T. S.; Yang, J.; Zhu, X. L.; Li, G. X. Rhodopsin-like ionic gate fabricated with graphene oxide and isomeric DNA switch for efficient photocontrol of ion transport. J. Am. Chem. Soc. 2019, 141, 8239-8243.
[41]
Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530-547.
[42]
Pan, W. Y.; Huang, C. C.; Lin, T. T.; Hu, H. Y.; Lin, W. C.; Li, M. J.; Sung, H. W. Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine 2016, 12, 431-438.
[43]
Zhu, X. L.; Shen, Y. L.; Cao, J. P.; Yin, L.; Ban, F. F.; Shu, Y. Q.; Li, G. X. Detection of microRNA SNPs with ultrahigh specificity by using reduced graphene oxide-assisted rolling circle amplification. Chem. Commun. 2015, 51, 10002-10005.
[44]
Zhu, X. L.; Sun, L. Y.; Chen, Y. Y.; Ye, Z. H.; Shen, Z. M.; Li, G. X. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication. Biosens. Bioelectron. 2013, 47, 32-37.
[45]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem., Int. Ed. 2007, 46, 2023-2027.
[46]
Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem., Int. Ed. 2009, 48, 7668-7672.
[47]
Zhu, X. L.; Zhang, H. H.; Feng, C.; Ye, Z. H.; Li, G. X. A dual-colorimetric signal strategy for DNA detection based on graphene and DNAzyme. RSC Adv. 2014, 4, 2421-2426.
[48]
Zhu, X. L.; Zhang, B.; Ye, Z. H.; Shi, H.; Shen, Y. L.; Li, G. X. An ATP-responsive smart gate fabricated with a graphene oxide-aptamer-nanochannel architecture. Chem. Commun. 2015, 51, 640-643.
[49]
Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.
[50]
Yang, K.; Wan, J. M.; Zhang, S.; Tian, B.; Zhang, Y. J.; Liu, Z. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 2012, 33, 2206-2214.
[51]
Perrone, R.; Butovskaya, E.; Lago, S.; Garzino-Demo, A.; Pannecouque, C.; Palù, G.; Richter, S. N. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell. Int. J. Antimicrob. Agents 2016, 47, 311-316.
Nano Research
Pages 2165-2174
Cite this article:
Ren L, Chen X, Feng C, et al. Visualized and cascade-enhanced gene silencing by smart DNAzyme-graphene nanocomplex. Nano Research, 2020, 13(8): 2165-2174. https://doi.org/10.1007/s12274-020-2826-5
Topics:

674

Views

10

Crossref

N/A

Web of Science

9

Scopus

2

CSCD

Altmetrics

Received: 26 December 2019
Revised: 20 April 2020
Accepted: 21 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return