AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries

Zechao Zhuang1Qi Kang2Dingsheng Wang1( )Yadong Li1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

Abstract

With high energy density and low material cost, lithium-sulfur batteries (LSBs) emerge quite expeditiously as a fascinating energy storage system over the past decade. Broad applications of LSBs ranging from electric vehicles to stationary grid storage seem rather bright in recent literatures. However, there still exist many pressing challenges to be addressed because we do not yet fully understand and control the electrode-electrolyte interface chemistries during battery operation, such as polysulfide shuttling and poor utilization of active sulfur. Single-atom catalysts (SACs) pave new possibilities of tackling the tough issues due to their decent applicability in the atomic-level identification of structure-activity relationships and reaction mechanism, as well as their structural tunability with atomic precision. This review comprehensively summarizes the very recent advances in utilization of highly active SACs for LSBs by stating and discussing the related publications, which involves catalyst synthesis routes, battery performance, catalytic mechanisms, optimization strategies, and promises to achieve long-life, high-energy LSBs. We see that endeavors to employ SACs to modify sulfur cathode have allowed efficient polysulfide conversion and confinement, leading to the minimization of shuttle effect. Parallel efforts are being devoted to extending the scope of SACs to cell separator and lithium metal anode in order to unlock the full potential of LSBs. We also obtain mechanistic insights into battery chemistries and nature of SACs in their strong interactions with polysulfides through advanced in situ characterizations documented. Overall, acceleration in the development of LSBs by introducing SACs is noticeable, and this cutting edge needs more attentions to further promoting the design of better LSBs.

References

[1]
Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570-3589.
[2]
Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617-624.
[3]
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
[4]
Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
[5]
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2014, 7, 19-29.
[6]
Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.
[7]
Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium- sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.
[8]
Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540-550.
[9]
Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium- sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237-5288.
[10]
Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.
[11]
Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.
[12]
Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.
[13]
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[14]
Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644-2647.
[15]
Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577-585.
[16]
Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325-4329.
[17]
Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100-6105.
[18]
Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.
[19]
Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519-527.
[20]
Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.
[21]
Wang, J.; Jia, L. J.; Zhong, J.; Xiao, Q. B.; Wang, C.; Zang, K. T.; Liu, H. T.; Zheng, H. C.; Luo, J.; Yang, J. et al. Single-atom catalyst boosts electrochemical conversion reactions in batteries. Energy Storage Mater. 2019, 18, 246-252.
[22]
Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Soc. Chem. 2019, 141, 3977-3985.
[23]
Zhang, K.; Chen, Z. X.; Ning, R. Q.; Xi, S. B.; Tang, W.; Du, Y. H.; Liu, C. B.; Ren, Z. Y.; Chi, X.; Bai, M. H. et al. Single-atom coated separator for robust lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147-25154.
[24]
Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-641.
[25]
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.
[26]
Xu, Q.; Guo, C.; Tian, S.; Zhang, J.; Chen, W.; Cheong, W.; Gu, L.; Zheng, L.; Xiao, J.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater., in press, .
[27]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res., in press, .
[28]
Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.
[29]
Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.
[30]
Yang, H. P.; Lin, Q.; Zhang, C.; Yu, X. Y.; Cheng, Z.; Li, G. D.; Hu, Q.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 2020, 11, 593.
[31]
Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol., in press, .
[32]
Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868-3880.
[33]
Liang, J. X.; Yu, Q.; Yang, X. F.; Zhang, T.; Li, J. A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation. Nano Res. 2018, 11, 1599-1611.
[34]
Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302-1312.
[35]
Ta, H. Q.; Zhao, L.; Yin, W. J.; Pohl, D.; Rellinghaus, B.; Gemming, T.; Trzebicka, B.; Palisaitis, J.; Jing, G.; Persson, P. O. Å. et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405-2411.
[36]
Zai, H. C.; Zhao, Y. Z.; Chen, S. Y.; Ge, L.; Chen, C. F.; Chen, Q.; Li, Y. J. Heterogeneously supported pseudo-single atom Pt as sustainable hydrosilylation catalyst. Nano Res. 2018, 11, 2544-2552.
[37]
Xu, Y. S.; Zhu, L. P.; Cui, X. X.; Zhao, M. Y.; Li, Y. L.; Chen, L. L.; Jiang, W. C.; Jiang, T.; Yang, S. G.; Wang, Y. Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly efficient oxygen reduction reaction. Nano Res. 2020, 13, 752-758.
[38]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[39]
Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947-951.
[40]
Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev., in press, .
[41]
Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-800.
[42]
Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.
[43]
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407-7410.
[44]
Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295-1301.
[45]
Tang, Y.; Asokan, C.; Xu, M. J.; Graham, G. W.; Pan, X. Q.; Christopher, P.; Li, J.; Sautet, P. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 2019, 10, 4488.
[46]
Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725-737.
[47]
Park, J.; Lee, S.; Kim, H. E.; Cho, A.; Kim, S.; Ye, Y. J.; Han, J. W.; Lee, H.; Jang, J. H.; Lee, J. Investigation of the support effect in atomically dispersed Pt on WO3-x for utilization of Pt in the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16038-16042.
[48]
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed., in press, .
[49]
Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401-1409.
[50]
Zhou, X.; Shen, Q.; Yuan, K. D.; Yang, W. S.; Chen, Q. W.; Geng, Z. H.; Zhang, J. L.; Shao, X.; Chen, W.; Xu, G. Q. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 2018, 140, 554-557.
[51]
Liu, Z. Z.; Zhou, L.; Ge, Q.; Chen, R. J.; Ni, M.; Utetiwabo, W.; Zhang, X. L.; Yang, W. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 19311-19317.
[52]
Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421-3430.
[53]
Zeng, Q. W.; Hu, R. M.; Chen, Z. B.; Shang, J. X. Single-atom Fe and N co-doped graphene for lithium-sulfur batteries: A density functional theory study. Mater. Res. Express 2019, 6, 095620.
[54]
Wu, J. L.; Chen, J. M.; Huang, Y.; Feng, K.; Deng, J.; Huang, W.; Wu, Y. L.; Zhong, J.; Li, Y. G. Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci. Bull. 2019, 64, 1875-1880.
[55]
Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252-1261.
[56]
Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.
[57]
Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.
[58]
Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.
[59]
Li, Y. J.; Zhou, P.; Li, H.; Gao, T. T.; Zhou, L.; Zhang, Y. L.; Xiao, N.; Xia, Z. H.; Wang, L.; Zhang, Q. H. et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 2020, 4, 1900701.
[60]
Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.
[61]
Shi, Z. P.; Wang, L.; Xu, H. F.; Wei, J. Q.; Yue, H. Y.; Dong, H. Y.; Yin, Y. H.; Yang, S. T. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries. Chem. Commun. 2019, 55, 12056-12059.
[62]
Liu, H.; Chen, X.; Cheng, X. B.; Li, B. Q.; Zhang, R.; Wang, B.; Chen, X.; Zhang, Q. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 2019, 3, 1800354.
[63]
Zhai, P. B.; Wang, T. S.; Yang, W. W.; Cui, S. Q.; Zhang, P.; Nie, A. M.; Zhang, Q. F.; Gong, Y. J. Uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv. Energy Mater. 2019, 9, 1804019.
[64]
Sun, Y. W.; Zhou, J. Q.; Ji, H. Q.; Liu, J.; Qian, T.; Yan, C. L. Single-atom iron as lithiophilic site to minimize lithium nucleation overpotential for stable lithium metal full battery. ACS Appl. Mater. Interfaces 2019, 11, 32008-32014.
[65]
Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891-898.
Nano Research
Pages 1856-1866
Cite this article:
Zhuang Z, Kang Q, Wang D, et al. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Research, 2020, 13(7): 1856-1866. https://doi.org/10.1007/s12274-020-2827-4
Topics:
Part of a topical collection:

1359

Views

281

Crossref

N/A

Web of Science

275

Scopus

0

CSCD

Altmetrics

Received: 17 March 2020
Revised: 20 April 2020
Accepted: 21 April 2020
Published: 29 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return