Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures

Fajer Mushtaq()Xiangzhong ChenHarun TorlakcikBradley J. NelsonSalvador Pané
Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Smart catalysts that can simultaneously utilize multiple energy sources will have a significant positive impact on the inefficiencies of conventional environmental remediation approaches, and will address their high energy demands. In this work, we have manufactured multiferroic magnetoelectric photocatalysts that can be simultaneously activated using multiple energy sources for the degradation of organic pollutants. The catalysts are composed of CoFe2O4@BiFeO3 (CFO@BFO) nanooctahedrons (NOs), CFO@BFO nanocubes (NCs), and CFO@BFO nanowires (NWs), and were successful in harnessing energy from three different energy sources, including UV-vis light, acoustically mediated mechanical vibrations and magnetic fields. The CFO@BFO NOs displayed the most enhanced degradation, reaching 93%, 96%, and 99% degradation of RhB dye within 1 h under light, ultrasound, and magnetic fields, respectively. When these energy sources were used simultaneously, significantly increased reaction rates were observed compared to the single-energy source stimulation. Results of radical trapping experiments indicate that radical species i.e., OH· and O2·- play a dominant role in catalytic degradation of organic pollutant, RhB, under all three stimuli. These results will contribute significantly to the development of new environmental technologies that are highly versatile in nature and able to adapt to changing environments to deliver efficient environmental remediation.

References

[1]
Gao, W.; Wang, J. The environmental impact of micro/nanomachines: A review. ACS Nano 2014, 8, 3170-3180.
[2]
Jurado-Sánchez, B.; Wang, J. Micromotors for environmental applications: A review. Environ. Sci.: Nano 2018, 5, 1530-1544.
[3]
de Lima, R. O. A.; Bazo, A. P.; Salvadori, D. M. F.; Rech, C. M.; de Palma Oliveira, D.; de Aragão Umbuzeiro, G. Mutagenic and carcinogenic potential of a textile AZO dye processing plant effluent that impacts a drinking water source. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 626, 53-60.
[4]
Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C. S. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899-7908.
[5]
Mantzavinos, D.; Poulios, I.; Fernández-Ibañez, P.; Malato, S. Advanced oxidation processes for environmental protection. Environ. Sci. Pollut. Res. 2014, 21, 12109-12111.
[6]
Jiménez, S.; Andreozzi, M.; Micó, M. M.; Álvarez, M. G.; Contreras, S. Produced water treatment by advanced oxidation processes. Sci. Total. Environ. 2019, 666, 12-21.
[7]
Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S. A review on nanomaterials for environmental remediation. Energy Environ. Sci. 2012, 5, 8075-8109.
[8]
Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 2011, 115, 9136-9145.
[9]
Long, R.; Prezhdo, O. V. Dopants control electron-hole recombination at perovskite-TiO2 interfaces: Ab initio time-domain study. ACS Nano 2015, 9, 11143-11155.
[10]
Mushtaq, F.; Asani, A.; Hoop, M.; Chen, X. Z.; Ahmed, D.; Nelson, B. J.; Pané, S. Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies. Adv. Func. Mater. 2016, 26, 6995-7002.
[11]
Masid, S.; Tayade, R.; Neti, N.; Efficient visible light active polyaniline/TiO2 nanocomposite photocatalyst for degradation of Reactive Blue 4. Photon. 2015, 119, 190-203.
[12]
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919-9986.
[13]
Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211-13241.
[14]
Mushtaq, F.; Guerrero, M.; Sakar, M. S.; Hoop, M.; Lindo, A. M.; Sort, J.; Chen, X. Z.; Nelson, B. J.; Pellicer, E.; Pané, S. Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J. Mater. Chem. A 2015, 3, 23670-23676.
[15]
APC International Ltd. Piezoelectric Ceramics: Principles and Applications; APC International: Mackeyville, PA, 2002.
[16]
Hong, K. S.; Xu, H. F.; Konishi, H.; Li, X. C. Direct water splitting through vibrating piezoelectric microfibers in water. J. Phys. Chem. Lett. 2010, 1, 997-1002.
[17]
Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372-2379.
[18]
Dai, B. Y.; Lu, C. H.; Kou, J. H.; Xu, Z. Z.; Wang, F. L. Photocatalytic performance of PMN-PT@TiO2 highly enhanced by alternative spatial electric field induced charge separation effect. J. Alloys Compd. 2017, 696, 988-995.
[19]
Mushtaq, F.; Torlakcik, H.; Hoop, M.; Jang, B.; Carlson, F.; Grunow, T.; Läubli, N.; Ferreira, A.; Chen, X. Z.; Nelson, B. J. et al. Motile piezoelectric nanoeels for targeted drug delivery. Adv. Func. Mater. 2019, 29, 1808135.
[20]
Zhang, Y.; Liu, C. H.; Zhu, G. L.; Huang, X.; Liu, W.; Hu, W. G.; Song, M.; He, W. D.; Liu, J.; Zhai, J. Y. Piezotronic-effect-enhanced Ag2S/ZnO photocatalyst for organic dye degradation. RSC Adv. 2017, 7, 48176-48183.
[21]
Hong, D. Y.; Zang, W. L.; Guo, X.; Fu, Y. M.; He, H. X.; Sun, J.; Xing, L. L.; Liu, B. D.; Xue, X. Y. High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye. ACS Appl. Mater. Interfaces 2016, 8, 21302-21314.
[22]
Ji, Y.; Zhang, K. W.; Yang, Y. A one-structure-based multieffects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 2018, 5, 1700622.
[23]
Singh, S.; Khare, N. Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: Realizing an efficient piezo-photoanode and piezo-photocatalyst. Nano Energy 2017, 38, 335-341.
[24]
Mushtaq, F.; Chen, X. Z.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B. J.; Pané, S. Piezoelectrically enhanced photocatalysis with BiFeO3 nanostructures for efficient water remediation. iScience 2018, 4, 236-246.
[25]
Fu, B.; Lu, R.; Gao, K.; Yang, Y. D.; Wang, Y. P. Substrate clamping effect onto magnetoelectric coupling in multiferroic BaTiO3-CoFe2O4 core-shell nanofibers via coaxial electrospinning. EPL 2015, 112, 27002.
[26]
Zhu, Q. F.; Xie, Y.; Zhang, J.; Liu, Y. M.; Zhan, Q. F.; Miao, H. C.; Xie, S. H. Multiferroic CoFe2O4-BiFeO3 core-shell nanofibers and their nanoscale magnetoelectric coupling. J. Mater. Res. 2014, 29, 657-664.
[27]
Chen, X. Z.; Hoop, M.; Shamsudhin, N.; Huang, T. Y.; Özkale, B.; Li, Q.; Siringil, E.; Mushtaq, F.; Di Tizio, L.; Nelson, B. J. et al. Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 2017, 29, 1605458.
[28]
Mushtaq, F.; Chen, X. Z.; Torlakcik, H.; Steuer, C.; Hoop, M.; Siringil, E. C.; Marti, X.; Limburg, G.; Stipp, P.; Nelson, B. J. et al. Magnetoelectrically driven catalytic degradation of organics. Adv. Mater. 2019, 31, 1901378.
[29]
Betal, S.; Shrestha, B.; Dutta, M.; Cotica, L. F.; Khachatryan, E.; Nash, K.; Tang, L.; Bhalla, A. S.; Guo, R. Y. Magneto-elasto-electroporation (MEEP): In-vitro visualization and numerical characteristics. Sci. Rep. 2016, 6, 32019.
[30]
Aimon, N. M.; Liao, J. X.; Ross, C. A. Simulation of inhomogeneous magnetoelastic anisotropy in ferroelectric/ferromagnetic nanocomposites. Appl. Phys. Lett. 2012, 101, 232901.
[31]
Lopes-Moriyama, A. L.; Madigou, V.; de Souza, C. P.; Leroux, C. Controlled synthesis of CoFe2O4 nano-octahedra. Powder Technol. 2014, 256, 482-489.
[32]
Chikazumi, S. Physics of Ferromagnetism 2e; Oxford University Press: Oxford, 1997.
[33]
Khaja Mohaideen, K.; Joy, P. A. High magnetostriction parameters for low-temperature sintered cobalt ferrite obtained by two-stage sintering. J. Magn. Magn. Mater. 2014, 371, 121-129.
[34]
Kumar, A.; Scott, J. F.; Martínez, R.; Srinivasan, G.; Katiyar, R. S. In-plane dielectric and magnetoelectric studies of BiFeO3. Phys. Status Solidi A 2012, 209, 1207-1212.
[35]
Graf, M.; Sepliarsky, M.; Machado, R.; Stachiotti, M. G. Dielectric and piezoelectric properties of BiFeO3 from molecular dynamics simulations. Solid State Commun. 2015, 218, 10-13.
[36]
Wang, Y. L.; Wu, Z. H.; Deng, Z. C.; Chu, L. Z.; Liu, B. T.; Liang, W. H.; Fu, G. S. First-principle calculation of elastic compliance coefficients for BiFeO3. Ferroelectrics 2009, 386, 133-138.
[37]
Paufler, P.; Nye, J. F. Physical Properties of Crystals. Clarendon Press: Oxford, Cryst. Res. Technol. 2009, 21, 1508-1508.
[38]
Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 1986, 21, 2463-2485.
[39]
Bueno-Baques, D.; Corral-Flores, V.; Morales, N.; Torres, A.; Camacho-Montes, H.; Ziolo, R. F. Structural and magnetic properties of cobal ferrite-barium titanate nanotube arrays. MRS Online Proceeding Library 2011, 1368.
[40]
Gujar, T. P.; Shinde, V. R.; Kulkarni, S. S.; Pathan, H. M.; Lokhande, C. D. Room temperature electrodeposition and characterization of bismuth ferric oxide (BFO) thin films from aqueous nitrate bath. Appl. Surf. Sci. 2006, 252, 3585-3590.
[41]
Vasundhara, K.; Achary, S. N.; Deshpande, S. K.; Babu, P. D.; Meena, S. S.; Tyagi, A. K. Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 2013, 113, 194101.
[42]
Gujar, T. P.; Shinde, V. R.; Lokhande, C. D. Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 2007, 103, 142-146.
[43]
Vadivel, M.; Babu, R. R.; Ramamurthi, K.; Arivanandhan, M. CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles. Ceram. Int. 2016, 42, 19320-19328.
[44]
Zhang, Q.; Sando, D.; Nagarajan, V. Chemical route derived bismuth ferrite thin films and nanomaterials. J. Mater. Chem. C 2016, 4, 4092-4124.
[45]
Lin, J. W.; Tite, T.; Tang, Y. H.; Lue, C. S.; Chang, Y. M.; Lin, J. G. Correlation of spin and structure in doped bismuth ferrite nanoparticles. J. Appl. Phys. 2012, 111, 07D910.
[46]
Chakrabarti, K.; Das, K.; Sarkar, B.; Ghosh, S.; De, S. K.; Sinha, G.; Lahtinen, J. Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl. Phys. Lett. 2012, 101, 042401.
[47]
Gao, F.; Chen, X. Y.; Yin, K. B.; Dong, S.; Ren, Z. F.; Yuan, F.; Yu, T.; Zou, Z. G.; Liu, J. M. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv. Mater. 2007, 19, 2889-2892.
[48]
Mushtaq, F.; Torlakcik, H.; Vallmajo-Martin, Q.; Can Siringil, E.; Zhang, J. H.; Röhrig, C.; Shen, Y.; Yu, Y. C.; Chen, X. Z.; Müller, R. et al. Magnetoelectric 3D scaffolds for enhanced bone cell proliferation. Appl. Mater. Today 2019, 16, 290-300.
[49]
Kalam, A.; Al-Sehemi, A. G.; Assiri, M.; Du, G. H.; Ahmad, T.; Ahmad, I.; Pannipara, M. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Res. Phys. 2018, 8, 1046-1053.
[50]
Duangjam, S.; Wetchakun, K.; Phanichphant, S.; Wetchakun, N. Hydrothermal synthesis of novel CoFe2O4/BiVO4 nanocomposites with enhanced visible-light-driven photocatalytic activities. Mater. Lett. 2016, 181, 86-91.
[51]
Mohan, S.; Subramanian, B.; Sarveswaran, G. A prototypical development of plasmonic multiferroic bismuth ferrite particulate and fiber nanostructures and their remarkable photocatalytic activity under sunlight. J. Mater. Chem. C 2014, 2, 6835-6842.
[52]
Mocherla, P. S. V.; Karthik, C.; Ubic, R.; Rao, M. S. R.; Sudakar, C. Tunable bandgap in BiFeO3 nanoparticles: The role of microstrain and oxygen defects. Appl. Phys. Lett. 2013, 103, 022910.
[53]
Chen, X. Z.; Li, Q.; Chen, X.; Guo, X.; Ge, H. X.; Liu, Y.; Shen, Q. D. Nano-imprinted ferroelectric polymer nanodot arrays for high density data storage. Adv. Func. Mater. 2013, 23, 3124-3129.
[54]
Xie, S. H.; Li, J. Y.; Proksch, R.; Liu, Y. M.; Zhou, Y. C.; Liu, Y. Y.; Ou, Y.; Lan, L. N.; Qiao, Y. Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning. Appl. Phys. Lett. 2008, 93, 222904.
[55]
Caruntu, G.; Yourdkhani, A.; Vopsaroiu, M.; Srinivasan, G. Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 2012, 4, 3218-3227.
[56]
Chen, X. Z.; Shamsudhin, N.; Hoop, M.; Pieters, R.; Siringil, E.; Sakar, M. S.; Nelson, B. J.; Pané, S. Magnetoelectric micromachines with wirelessly controlled navigation and functionality. Mater. Horiz. 2016, 3, 113-118.
[57]
Chen, X. Z.; Chen, X.; Guo, X.; Cui, Y. S.; Shen, Q. D.; Ge, H. X. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption. Nanoscale 2014, 6, 13945-13951.
[58]
Miao, H. C.; Zhou, X. L.; Dong, S. X.; Luo, H. S.; Li, F. X. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy. Nanoscale 2014, 6, 8515-8520.
[59]
Xie, S. H.; Ma, F. Y.; Liu, Y. M.; Li, J. Y. Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 core-shell nanofibers and their magnetoelectric coupling. Nanoscale 2011, 3, 3152-3158.
[60]
Leyman, R.; Henriet-Iserentant, C.; Vandenberghe, R. E. Magnetostriction and anisotropy of CoxFe3-xO4 (0.005≤x≤0.6) single crystals. J. Magn. Magn. Mater. 1986, 54-57, 913-914.
[61]
Ederer, C.; Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 2005, 71, 060401.
[62]
Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44-51.
[63]
Zhang, N.; Chen, D.; Niu, F.; Wang, S.; Qin, L. S.; Huang, Y. X. Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci. Rep. 2016, 6, 26467.
[64]
Wu, J.; Mao, W. J.; Wu, Z.; Xu, X. L.; You, H. L.; Xue, A. X.; Jia, Y. M. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation. Nanoscale 2016, 8, 7343-7350.
Nano Research
Pages 2183-2191
Cite this article:
Mushtaq F, Chen X, Torlakcik H, et al. Enhanced catalytic degradation of organic pollutants by multi-stimuli activated multiferroic nanoarchitectures. Nano Research, 2020, 13(8): 2183-2191. https://doi.org/10.1007/s12274-020-2829-2
Topics:
Metrics & Citations  
Article History
Copyright
Return