Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry

Jiyeon Kim1Dongsik Nam1Hiroshi Kitagawa2Dae-Woon Lim2,()Wonyoung Choe1()
Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Present address: Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493, Republic of Korea

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Metal-based secondary building unit and the shape of organic ligands are the two crucial factors for determining the final topology of metal-organic materials. A careful choice of organic and inorganic structural building units occasionally produces unexpected structures, facilitating deeper fundamental understanding of coordination-driven self-assembly behind metal-organic materials. Here, we have synthesized a triangular metal-organic polygon (MOT-1), assembled from bulky tetramethyl terephthalate and Zr-based secondary building unit. Surprisingly, the Zr-based secondary building unit serves as an unusual ditopic Zr-connector, to form metal-organic polygon MOT-1, proven to be a good candidate for water adsorption with recyclability. This study highlights the interplay of the geometrically frustrated ligand and secondary building unit in controlling the connectivity of metal-organic polygon. Such a strategy can be further used to unveil a new class of metal-organic materials.

Electronic Supplementary Material

Download File(s)
12274_2020_2830_MOESM1_ESM.pdf (2.1 MB)
12274_2020_2830_MOESM2_ESM.cif (3.6 MB)

References

[1]
M. O’Keeffe,; O. M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675-702.
[2]
T. R. Cook,; Y.-R. Zheng,; P. J. Stang, Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734-777.
[3]
B. Rungtaweevoranit,; C. S. Diercks,; M. J. Kalmutzki,; O. M. Yaghi, Spiers memorial lecture: Progress and prospects of reticular chemistry. Faraday Discuss. 2017, 201, 9-45.
[4]
T. Islamoglu,; S. Goswami,; Z. Y. Li,; A. J. Howarth,; O. K. Farha,; J. T. Hupp, Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc. Chem. Res. 2017, 50, 805-813.
[5]
P. Z. Moghadam,; A. Li,; S. B. Wiggin,; A. D. Tao,; A. G. P. Maloney,; P. A. Wood,; S. C. Ward,; D. Fairen-Jimenez, Development of a Cambridge structural database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618-2625.
[6]
O. M. Yaghi,; M. O’Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[7]
O. M. Yaghi,; M. J. Kalmutzki,; C. S. Diercks, Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, 2019.
[8]
M. O’Keeffe,; M. A. Peskov,; S. J. Ramsden,; O. M. Yaghi, The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782-1789.
[9]
M. J. Kalmutzki,; N. Hanikel,; O. M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.
[10]
Y. Bai,; Y. B. Dou,; L.-H. Xie,; W. Rutledge,; J.-R. Li,; H.-C. Zhou, Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chem. Soc. Rev. 2016, 45, 2327-2367.
[11]
A. J. Howarth,; Y. Y. Liu,; P. Li,; Z. Y. Li,; T. C. Wang,; J. T. Hupp,; O. K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.
[12]
M. Ding,; R. W. Flaig,; H.-L. Jiang,; O. M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783-2828.
[13]
P. Deria,; J. E. Mondloch,; E. Tylianakis,; P. Ghosh,; W. Bury,; R. Q. Snurr,; J. T. Hupp,; O. K. Farha, Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc. 2013, 135, 16801-16804.
[14]
D. A. Gomez-Gualdron,; O. V. Gutov,; V. Krungleviciute,; B. Borah,; J. E. Mondloch,; J. T. Hupp,; T. Yildirim,; O. K. Farha;; R. Q. Snurr, Computational design of metal-organic frameworks based on stable zirconium building units for storage and delivery of methane. Chem. Mater. 2014, 26, 5632-5639.
[15]
C.-C. Cao,; C.-X. Chen,; Z.-W. Wei,; Q.-F. Qiu,; N.-X. Zhu,; Y.-Y. Xiong,; J.-J. Jiang,; D. W. Wang,; C.-Y. Su, Catalysis through dynamic spacer installation of multivariate functionalities in metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 2589-2593.
[16]
C. A. Trickett,; T. M. O. Popp,; J. Su,; C. Yan,; J. Weisberg,; A. Huq,; P. Urban,; J. C. Jiang,; M. J. Kalmutzki,; Q. N. Liu, et al. Identification of the strong brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170-176.
[17]
Q. C. Xia,; Z. J. Li,; C. X. Tan,; Y. Liu,; W. Gong,; Y. Cui, Multivariate metal-organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 2017, 139, 8259-8266.
[18]
K. Na,; K. M. Choi,; O. M. Yaghi,; G. A. Somorjai, Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979-5983.
[19]
B. Wang,; X.-L. Lv,; D. W. Feng,; L.-H. Xie,; J. Zhang,; M. Li,; Y. B. Xie,; J.-R. Li,; H.-C. Zhou, Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 2016, 138, 6204-6216.
[20]
Z. C. Hu,; B. J. Deibert,; J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815-5840.
[21]
H.-L. Jiang,; D. W. Feng,; K. C. Wang,; Z.-Y. Gu,; Z. W. Wei,; Y.-P. Chen,; H.-C. Zhou, An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934-13938.
[22]
G. L. Liu,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong, In situ construction of a coordination zirconocene tetrahedron. Inorg. Chem. 2013, 52, 13815-13817.
[23]
D. Nam,; J. Huh,; J. Lee,; J. H. Kwak,; H. Y. Jeong,; K. Choi,; W. Choe, Cross-linking Zr-based metal-organic polyhedra via postsynthetic polymerization. Chem. Sci. 2017, 8, 7765-7771.
[24]
G. L. Liu,; Y. D. Yuan,; J. Wang,; Y. D. Cheng,; S. B. Peh,; Y. X. Wang,; Y. H. Qian,; J. Q. Dong,; D. Q. Yuan,; D. Zhao, Process-tracing study on the postassembly modification of highly stable zirconium metal-organic cages. J. Am. Chem. Soc. 2018, 140, 6231-6234.
[25]
J. J. Liu,; W. J. Duan,; J. Song,; X. X. Guo,; Z. F. Wang,; X. L. Shi,; J. J. Liang,; J. Wang,; P. Cheng,; Y. Chen, et al. Self-healing hyper-cross-linked metal-organic polyhedra (HCMOPs) membranes with antimicrobial activity and highly selective separation properties. J. Am. Chem. Soc. 2019, 141, 12064-12070.
[26]
M. Sun,; Q.-Q. Wang,; C. Qin,; C.-Y. Sun,; X.-L. Wang,; Z.-M. Su, An amine-functionalized zirconium metal-organic polyhedron photocatalyst with high visible-light activity for hydrogen production. Chem.—Eur. J. 2019, 25, 2824-2830.
[27]
J. I. Choi,; H. Chun,; M. S. Lah, Zirconium-formate macrocycles and supercage: Molecular packing versus MOF-like network for water vapor sorption. J. Am. Chem. Soc. 2018, 140, 10915-10920.
[28]
D. Höhne,; E. Herdtweck,; A. Pöthig,; F. E. Kühn, Synthesis and characterization of dimeric and square-shaped dicarboxylate-bridged dimolybdenum(II) coordination compounds. Inorg. Chim. Acta 2015, 424, 210-215.
[29]
X.-M. Cai,; D. Höhne,; M. Köberl,; M. Cokoja,; A. Pöthig,; E. Herdtweck,; S. Haslinger,; W. A. Herrmann,; F. E. Kühn, Synthesis and characterization of dimolybdenum(II) complexes connected by carboxylate linkers. Organometallics 2013, 32, 6004-6011.
[30]
J.-R. Li,; A. A. Yakovenko,; W. G. Lu,; D. J. Timmons,; W. J. Zhuang,; D. Q. Yuan,; H.-C. Zhou, Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers. J. Am. Chem. Soc. 2010, 132, 17599-17610.
[31]
M. H. Chisholm,; N. J. Patmore,; C. R. Reed,; N. Singh, Oxalate bridged triangles incorporating Mo24+ units. Electronic structure and bonding. Inorg. Chem. 2010, 49, 7116-7122.
[32]
F. A. Cotton,; C. Y. Liu,; C. A. Murillo,; X. P. Wang, Dimolybdenum-containing molecular triangles and squares with diamidate linkers: Structural diversity and complexity. Inorg. Chem. 2006, 45, 2619-2626.
[33]
M. H. Chisholm,; A. M. Macintosh, Linking multiple bonds between metal atoms: Clusters, dimers of “dimers”, and higher ordered assemblies. Chem. Rev. 2005, 105, 2949-2976.
[34]
F. A. Cotton,; J. P. Donahue,; C. A. Murillo, The first supramolecular assemblies comprised of dimetal units and chiral dicarboxylates. Inorg. Chem. Commun. 2002, 5, 59-63.
[35]
F. A. Cotton,; C. Lin,; C. A. Murillo, A neutral triangular supramolecule formed by Mo24+ units. Inorg. Chem. 2001, 40, 575-577.
[36]
F. A. Cotton,; C. Lin,; C. A. Murillo, Supramolecular squares with Mo24+ corners. Inorg. Chem. 2001, 40, 478-484.
[37]
M. Köberl,; M. Cokoja,; W. A. Herrmann,; F. E. Kühn, From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal-organic frameworks. Dalton Trans. 2011, 40, 6834-6859.
[38]
F. A. Cotton,; C. Lin,; C. A. Murillo, Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 2001, 34, 759-771.
[39]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo, Square and triangular arrays based on Mo24+ and Rh24+ units. J. Am. Chem. Soc. 1999, 121, 4538-4539.
[40]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo,; S.-Y. Yu, Supramolecular squares with Rh24+ corners. J. Chem. Soc., Dalton Trans. 2001, 502-504.
[41]
J. F. Bickley,; R. P. Bonar-Law,; C. Femoni,; E. J. MacLean,; A. Steiner,; S. J. Teat, Dirhodium(II) carboxylate complexes as building blocks. synthesis and structures of square boxes with tilted walls. J. Chem. Soc., Dalton Trans. 2000, 4025-4027.
[42]
R. P. Bonar-Law,; T. D. McGrath,; N. Singh,; J. F. Bickley,; A. Steiner, Dinuclear complexes as connectors for carboxylates. Self-assembly of a molecular box. Chem. Commun. 1999, 2457-2458.
[43]
X. K. Song,; X. F. Liu,; M. Oh,; M. S. Lah, A double-walled triangular metal-organic macrocycle based on a [Cu2(COO)4] square paddle-wheel secondary building unit. Dalton Trans. 2010, 39, 6178-6180.
[44]
B. Wisser,; A.-C. Chamayou,; R. Miller,; W. Scherer,; C. Janiak, A chiral C3-symmetric hexanuclear triangular-prismatic copper(II) cluster derived from a highly modular dipeptidic N,N′-terephthaloyl-bis(S- aminocarboxylato) ligand. CrystEngComm 2008, 10, 461-464.
[45]
Y. T. Zhang,; X. L. Wang,; S. B. Li,; B. Q. Song,; K. Z. Shao,; Z. M. Su, Ligand-directed assembly of polyoxovanadate-based metal-organic polyhedra. Inorg. Chem. 2016, 55, 8770-8775.
[46]
Z. X. Zhang,; W.-Y. Gao,; L. Wojtas,; Z. J. Zhang,; M. J. Zaworotko, A new family of anionic organic-inorganic hybrid doughnut-like nanostructures. Chem. Commun. 2015, 51, 9223-9226.
[47]
V. Guillerm,; D. Maspoch, Geometry mismatch and reticular chemistry: Strategies to assemble metal-organic frameworks with non-default topologies. J. Am. Chem. Soc. 2019, 141, 16517-16538.
[48]
H. L. Li,; M. Eddaoudi,; T. L. Groy,; O. M. Yaghi, Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571-8572.
[49]
H. Furukawa,; J. Kim,; N. W. Ockwig,; M. O’Keeffe,; O. M. Yaghi, Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 2008, 130, 11650-11661.
[50]
M. Eddaoudi,; J. Kim,; M. O’Keeffe,; O. M. Yaghi, Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A framework deliberately designed to have the NbO structure type. J. Am. Chem. Soc. 2002, 124, 376-377.
[51]
M. Eddaoudi,; J. Kim,; J. B. Wachter,; H. K. Chae,; M. O’Keeffe,; O. M. Yaghi, Porous metal-organic polyhedra:  25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 2001, 123, 4368-4369.
[52]
V. Bon,; I. Senkovska,; I. A. Baburin,; S. Kaskel, Zr- and Hf-based metal-organic frameworks: Tracking down the polymorphism. Cryst. Growth Des. 2013, 13, 1231-1237.
[53]
H. Furukawa,; F. Gándara,; Y. B. Zhang,; J. C. Jiang,; W. L. Queen,; M. R. Hudson,; O. M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
[54]
J. H. Cavka,; S. Jakobsen,; U. Olsbye,; N. Guillou,; C. Lamberti,; S. Bordiga,; K. P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850-13851.
[55]
Z. F. Ju,; G. L. Liu,; Y.-S. Chen,; D. Q. Yuan,; B. L. Chen, From coordination cages to a stable crystalline porous hydrogen-bonded framework. Chem.—Eur. J. 2017, 23, 4774-4777.
[56]
H. S. Lee,; S. Jee,; R. Kim,; H.-T. Bui,; B. Kim,; J.-K. Kim,; K. S. Park,; W. Choi,; W. Kim,; K. M. Choi, A highly active, robust photocatalyst heterogenized in discrete cages of metal-organic polyhedra for CO2 reduction. Energy Environ. Sci. 2020, 13, 519-526.
[57]
J. J. Jiao,; C. X. Tan,; Z. J. Li,; Y. Liu,; X. Han,; Y. Cui, Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 2018, 140, 2251-2259.
[58]
G. L. Liu,; M. Zeller,; K. Z. Su,; J. D. Pang,; Z. F. Ju,; D. Q. Yuan,; M. C. Hong Controlled orthogonal self-assembly of heterometal-decorated coordination cages. Chem.—Eur. J. 2016, 22, 17345-17350.
[59]
S. M. Jansze,; G. Cecot,; M. D. Wise,; K. O. Zhurov,; T. K. Ronson,; A. M. Castilla,; A. Finelli,; P. Pattison,; E. Solari,; R. Scopelliti, et al. Ligand aspect ratio as a decisive factor for the self-assembly of coordination cages. J. Am. Chem. Soc. 2016, 138, 2046-2054.
[60]
B. Roy,; R. Saha,; A. K. Ghosh,; Y. Patil,; P. S. Mukherjee, Versatility of two diimidazole building blocks in coordination-driven self-assembly. Inorg. Chem. 2017, 56, 3579-3588.
[61]
D. Samanta,; A. Chowdhury,; P. S. Mukherjee, Covalent postassembly modification and water adsorption of Pd3 self-assembled trinuclear barrels. Inorg. Chem. 2016, 55, 1562-1568.
[62]
D. J. Tranchemontagne,; Z. Ni,; M. O’Keeffe,; O. M. Yaghi, Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed. 2008, 47, 5136-5147.
[63]
G. Cecot,; M. Marmier,; S. Geremia,; R. De Zorzi,; A. V. Vologzhanina,; P. Pattison,; E. Solari,; F. Fadaei Tirani,; R. Scopelliti,; K. Severin, The intricate structural chemistry of MII2nLn-type assemblies. J. Am. Chem. Soc. 2017, 139, 8371-8381.
[64]
G. Gupta,; A. Das,; K. C. Park,; A. Tron,; H. Kim,; J. Mun,; N. Mandal,; K.-W. Chi,; C. Y. Lee, Self-assembled novel BODIPY-based palladium supramolecules and their cellular localization. Inorg. Chem. 2017, 56, 4615-4621.
[65]
M. Fujita,; O. Sasaki,; T. Mitsuhashi,; T. Fujita,; J. Yazaki,; K. Yamaguchi,; K. Ogura, On the structure of transition-metal-linked molecular squares. Chem. Commun. 1996, 1535-1536.
[66]
B. J. Holliday,; C. A. Mirkin, Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem., Int. Ed. 2001, 40, 2022-2043.
[67]
W. Wang,; Y.-X. Wang,; H.-B. Yang, Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656-2693.
[68]
M. Fujita,; S, Nagao,; M. Iida,; K. Ogata,; K. Ogura, Palladium(II)- directed assembly of macrocyclic dinuclear complexes composed of (en)Pd2+ and bis(4-pyridyl)-substituted bidentate ligands. Remarkable ability for molecular recognition of electron-rich aromatic guests. J. Am. Chem. Soc. 1993, 115, 1574-1576.
[69]
L. N. Yu,; X. F. Jiang,; S. Y. Yu, Self-assembly of chiral nano-bowl from chiral Pd-complex building corners and 4,7-phenanthroline linkers. Chin. J. Chem. 2015, 33, 152-155.
[70]
S. Leininger,; J. Fan,; M. Schmitz,; P. J. Stang, Archimedean solids: Transition metal mediated rational self-assembly of supramolecular-truncated tetrahedra. Proc. Natl. Acad. Sci. USA 2000, 97, 1380-1384.
[71]
M. Fujita,; D. Oguro,; M. Miyazawa,; H. Oka,; K. Yamaguchi,; K. Ogura, Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 1995, 378, 469-471.
[72]
D. C. Caskey,; T. Yamamoto,; C. Addicott,; R. K. Shoemaker,; J. Vacek,; A. M. Hawkridge,; D. C. Muddiman,; G. S. Kottas,; J. Michl,; P. J. Stang, Coordination-driven face-directed self-assembly of trigonal prisms. Face-based conformational chirality. J. Am. Chem. Soc. 2008, 130, 7620-7628.
[73]
Y.-R. Zheng,; Z. G. Zhao,; H. Kim,; M. Wang,; K. Ghosh,; J. B. Pollock,; K.-W. Chi,; P. J. Stang, Coordination-driven self-assembly of truncated tetrahedra capable of encapsulating 1,3,5-triphenylbenzene. Inorg. Chem. 2010, 49, 10238-10240.
[74]
F. A. Cotton,; C. Lin,; C. A. Murillo, Connecting pairs of dimetal units to form molecular loops. Inorg. Chem. 2001, 40, 472-477.
[75]
G. R. Lorzing,; E. J. Gosselin,; B. S. Lindner,; R. Bhattacharjee,; G. P. A. Yap,; S. Caratzoulas,; E. D. Bloch, Design and synthesis of capped-paddlewheel-based porous coordination cages. Chem. Commun. 2019, 55, 9527-9530.
[76]
F. A. Cotton,; L. M. Daniels,; C. Lin,; C. A. Murillo, The designed ‘self-assembly’ of a three-dimensional molecule containing six quadruply-bonded Mo24+ units. Chem. Commun. 1999, 841-842.
[77]
M. Nelson,; E. Raschke,; M. McClelland, Effect of site-specific methylation on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res. 1993, 21, 3139-3154.
[78]
P. M. Barron,; C. A. Wray,; C. H. Hu,; Z. Y. Guo,; W. Choe, A bioinspired synthetic approach for building metal-organic frameworks with accessible metal centers. Inorg. Chem. 2010, 49, 10217-10219.
Nano Research
Pages 392-397
Cite this article:
Kim J, Nam D, Kitagawa H, et al. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Research, 2021, 14(2): 392-397. https://doi.org/10.1007/s12274-020-2830-9
Topics:
Metrics & Citations  
Article History
Copyright
Return