AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Gate controllable spin transistor with semiconducting tunneling barrier

Shuqin Zhang1,2Renrong Liang1,2( )Xiawa Wang1,2Wenjie Chen1,2Weijun Cheng1,2Jing Wang1,2Jun Xu1,2
Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
Show Author Information

Graphical Abstract

Abstract

In this work, we have fabricated a single layer graphene spin transistor on SiO2/Si with a semiconducting tri-layer MoS2 as the tunneling barrier between the ferromagnetic electrodes and the graphene channel. The spin transport in this parallel heterostructure were investigated in detail. The spin switch signal was controlled by tuning the conductivity of MoS2 with different gate voltages. When MoS2 was turned off under negative back gate voltage, the spin switch signal was clearly obtained, whereas it disappeared when MoS2 was conductive under positive back gate bias. This spin transistor showed on, subthreshold and off states when back gate voltage changed from negative to positive. This work exploited a new possibility of semiconducting 2D materials as the tunneling barrier of spin valves.

References

[1]
Narendra, S.; De, V.; Borkar, S.; Antoniadis, D. A.; Chandrakasan, A. P. Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18-µm CMOS. IEEE J. Solid-State Circuits 2004, 39, 501-510.
[2]
International Technology Roadmap for Semiconductors. Semiconductor Industry Association, San Jose, CA, USA, 2003.
[3]
Hall, K. C.; Flatté, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 2006, 88, 162503.
[4]
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; Von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488-1495.
[5]
Ziese, M.; Thornton, M. J. Spin Electronics; Springer: Berlin, 2001.
[6]
Awschalom, D. D.; Loss, D.; Samarth, N. Semiconductor Spintronics and Quantum Computation; Springer: New York, 2002.
[7]
Lin, C. C.; Penumatcha, A. V.; Gao, Y. F.; Diep, V. Q.; Appenzeller, J.; Chen, Z. H. Spin transfer torque in a graphene lateral spin valve assisted by an external magnetic field. Nano Lett. 2013, 13, 5177-5181.
[8]
Jedema, F. J.; Filip, A. T.; Van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 2001, 410, 345-348.
[9]
Johnson, M.; Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 1985, 55, 1790-1793.
[10]
Malajovich, I.; Kikkawa, J. M.; Awschalom, D. D.; Berry, J. J.; Samarth, N. Coherent transfer of spin through a semiconductor heterointerface. Phys. Rev. Lett. 2000, 84, 1015-1018.
[11]
Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L. W. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 1999, 402, 787-790.
[12]
Kikkawa, J. M.; Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 1999, 397, 139-141.
[13]
Ohno, Y.; Young, D. K.; Beschoten, B.; Matsukura, F.; Ohno, H.; Awschalom, D. D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999, 402, 790-792.
[14]
Ingla-Aynés, J.; Guimarães, M. H. D.; Meijerink, R. J.; Zomer, P. J.; Van Wees, B. J. 24-µm spin relaxation length in boron nitride encapsulated bilayer graphene. Phys. Rev. B 2015, 92, 201410.
[15]
Ertler, C.; Konschuh, S.; Gmitra, M.; Fabian, J. Electron spin relaxation in graphene: The role of the substrate. Phys. Rev. B 2009, 80, 041405.
[16]
Zomer, P. J.; Guimarães, M. H. D.; Tombros, N.; Van Wees, B. J. Long-distance spin transport in high-mobility graphene on hexagonal boron nitride. Phys. Rev. B 2012, 86, 161416.
[17]
Huertas-Hernando, D.; Guinea, F.; Brataas, A. Spin-orbit-mediated spin relaxation in graphene. Phys. Rev. Lett. 2009, 103, 146801.
[18]
Joiner, C. A.; Campbell, P. M.; Tarasov, A. A.; Beatty, B. R.; Perini, C. J.; Tsai, M. Y.; Ready, W. J.; Vogel, E. M. Graphene-molybdenum disulfide-graphene tunneling junctions with large-area synthesized materials. ACS Appl. Mater. Interfaces 2016, 8, 8702-8709.
[19]
Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P; Schönenberger, C.; Van Wees, B. J. Spin transport in fully hexagonal boron nitride encapsulated graphene. Phys. Rev. B 2016, 93, 115441.
[20]
Kamalakar, M. V.; Dankert, A.; Bergsten, J.; Ive, T.; Dash, S. P. Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 2015, 4, 6146.
[21]
Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665-667.
[22]
Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F; Zhu, Y.; Heiman, D.; Hone, J. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 2016, 15, 711-716.
[23]
Wang, Z.; Ki, D. K.; Khoo, J. Y.; Mauro, D.; Berger, H.; Levitov, L. S.; Morpurgo, A. F. Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 2016, 6, 041020.
[24]
Gmitra, M.; Kochan, D.; Högl, P; Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 2016, 93, 155104.
[25]
Avsar, A.; Tan, J. Y.; Taychatanapat, T.; Balakrishnan, J.; Koon, G. K. W.; Yeo, Y.; Lahiri, J.; Carvalho, A.; Rodin, A. S.; O’Farrell, E. C. T. et al. Spin-orbit proximity effect in graphene. Nat. Commun. 2014, 5, 4875.
[26]
Goswami, P. Effect of ferromagnetic exchange field on band gap and spin polarisation of graphene on a TMD substrate. Pramana - J. Phys. 2018, 90, 40.
[27]
Yang, W. H.; Shang, J. Z.; Wang, J. P.; Shen, X. N.; Cao, B. C.; Peimyoo, N.; Zou, C. J.; Chen, Y.; Wang, Y. L.; Cong, C. X. et al. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett. 2016, 16, 1560-1567.
[28]
O’Farrell, E. C. T.; Avsar, A.; Tan, J. Y.; Eda, G.; Özyilmaz, B. Quantum transport detected by strong proximity interaction at a graphene- WS2 van der Waals Interface. Nano Lett. 2015, 15, 5682-5688.
[29]
Yan, W. J.; Txoperena, O.; Llopis, R.; Dery, H.; Hueso, L. E.; Casanova, F. A two-dimensional spin field-effect switch. Nat. Commun. 2016, 7, 13372.
[30]
Dankert, A.; Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 2017, 8, 16093.
[31]
Avsar, A.; Tan, J. Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Özyilmaz, B. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 2017, 13, 888-893.
[32]
Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; Van Der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.
[33]
Omar, S.; Van Wees, B. J. Spin transport in high-mobility graphene on WS2 substrate with electric-field tunable proximity spin-orbit interaction. Phys. Rev. B 2018, 97, 045414.
Nano Research
Pages 2192-2196
Cite this article:
Zhang S, Liang R, Wang X, et al. Gate controllable spin transistor with semiconducting tunneling barrier. Nano Research, 2020, 13(8): 2192-2196. https://doi.org/10.1007/s12274-020-2832-7
Topics:

784

Views

1

Crossref

N/A

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 02 April 2019
Revised: 08 June 2019
Accepted: 25 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return