AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response

Xinxin Zhao1,3,§Qing Yin2,3,§Hao Huang4Qiang Yu3Bo Liu5Jie Yang1,3Zhuo Dong1,3Zhenjiang Shen6Benpeng Zhu7Lei Liao4Kai Zhang3( )
School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
School of Physics and Technology, Wuhan University, Wuhan 430072, China
The Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

§ Xinxin Zhao and Qing Yin contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Lead telluride (PbTe) is one of the reliable candidates for infrared (IR) optoelectronics with optimum band-gap as well as excellent photoelectric properties. Great interests had been paid on the growth and device applications with PbTe for the development of high-performance IR photodetectors especially those working in the near-infrared regime. Although a great deal of effort had been made to prepare PbTe nanostructures for miniaturized detectors, it is difficult to synthesize high-quality two-dimensional (2D) PbTe crystals due to its rock-salt non-layered structure. Herein, a facile strategy for controllable synthesis of ultrathin crystalline PbTe nanosheets by van der Waals epitaxy is reported. With an optimized growth temperature, which determines the morphology transit from triangular pyramid islands to regular square 2D planars, PbTe nanosheets in lateral size of tens of microns with thickness down to ~ 7 nm are achieved. Meanwhile, ultrasensitive near-infrared detectors (NIRDs) based on the as-grown 2D PbTe nanosheets have been demonstrated with an ultrahigh responsivity exceeding 3,847 A/W at the wavelength of 1,550 nm under room temperature. Our approach demonstrates that 2D PbTe nanosheets have great latent capacity of developing high-performance miniaturized IR optoelectronic devices.

References

[1]
Q. L. Kleipool,; R. T. Jongma,; A. M. S. Gloudemans,; H. Schrijver,; G. F. Lichtenberg,; R. M. Van Hees,; A. N. Maurellis,; R. W. M. Hoogeveen, In-flight proton-induced radiation damage to SCIAMACHY’s extended-wavelength InGaAs near-infrared detectors. Infrared Phys. Technol. 2007, 50, 30-37.
[2]
R. K. Bhan,; V. Dhar, Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto Electron. Rev. 2019, 27, 174-193.
[3]
M. Casalino,; G. Coppola,; M. Iodice,; I. Rendina,; L. Sirleto, Near- infrared sub-bandgap all-silicon photodetectors: State of the art and perspectives. Sensors 2010, 10, 10571-10600.
[4]
J. Kim,; E. K. Ampadu,; E. Oh,; H. Choi,; H. Y. Ahn,; S. H. Cho,; W. J. Choi,; J. Y. Byun, Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes. Curr. Appl. Phys. 2020, 20, 445-450.
[5]
G. H. Chen,; Y. Q. Yu,; K. Zheng,; T. Ding,; W. L. Wang,; Y. Jiang,; Q. Yang, Fabrication of ultrathin Bi2S3 nanosheets for high- performance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848-2855.
[6]
H. Zhang, Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451-9469.
[7]
M. Q. Zeng,; Y. Xiao,; J. X. Liu,; K. N. Yang,; L. Fu, Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236-6296.
[8]
G. Konstantatos, Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 2018, 9, 5266.
[9]
F. N. Xia,; H. Wang,; D. Xiao,; M. Dubey,; A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[10]
J. L. Wang,; H. H. Fang,; X. D. Wang,; X. S. Chen,; W. Lu,; W. D. Hu, Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.
[11]
D. Kufer,; G. Konstantatos, Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197-2210.
[12]
F. N. Xia,; T. Mueller,; Y. M. Lin,; A. Valdes-Garcia,; P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol 2009, 4, 839-843.
[13]
X. T. Gan,; R. J. Shiue,; Y. D. Gao,; I. Meric,; T. F. Heinz,; K. Shepard,; J. Hone,; S. Assefa,; D. Englund, Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883-887.
[14]
Y. Chen,; X. D. Wang,; G. J. Wu,; Z. Wang,; H. H. Fang,; T. Lin,; S. Sun,; H. Shen,; W. D. Hu,; J. L. Wang, et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293.
[15]
T. J. Dai,; X. D. Fan,; Y. X. Ren,; S. Hou,; Y. Y. Zhang,; L. X. Qian,; Y. R. Li,; X. Z. Liu, Layer-controlled synthesis of wafer-scale MoSe2 nanosheets for photodetector arrays. J. Mater. Sci. 2018, 53, 8436-8444.
[16]
N. Perea-López,; A. L. Elías,; A. Berkdemir,; A. Castro-Beltran,; H. R. Gutiérrez,; S. M. Feng,; R. T. Lv,; T. Hayashi,; F. López-Urías,; S. Ghosh, et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511-5517.
[17]
Q. S. Guo,; A. Pospischil,; M. Bhuiyan,; H. Jiang,; H. Tian,; D. Farmer,; B. C. Deng,; C. Li,; S. J. Han,; H. Wang, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[18]
A. Castellanos-Gomez,; L. Vicarelli,; E. Prada,; J. O. Island,; K. L. Narasimha- Acharya,; S. I. Blanter,; D. J. Groenendijk,; M. Buscema,; G. A. Steele,; J. V. Alvarez, et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.
[19]
X. Ling,; H. Wang,; S. X. Huang,; F. N. Xia,; M. S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523-4530.
[20]
Y. J. Xu,; C. L. Liu,; C. Guo,; Q. Yu,; W. L. Guo,; W. Lu,; X. S. Chen,; L. Wang,; K. Zhang, High performance near infrared photodetector based on in-plane black phosphorus p-n homojunction. Nano Energy 2020, 70, 104518.
[21]
J. Fürst,; H. Pascher,; T. Schwarzl,; M. Böberl,; W. Heiss,; G. Springholz,; G. Bauer, Midinfrared IV-VI vertical-cavity surface-emitting lasers with zero-, two-, and three-dimensional systems in the active regions. Appl. Phys. Lett. 2002, 81, 208-210.
[22]
M. Rahim,; M. Fill,; F. Felder,; D. Chappuis,; M. Corda,; H. Zogg, Mid-infrared PbTe vertical external cavity surface emitting laser on Si-substrate with above 1 W output power. Appl. Phys. Lett. 2009, 95, 241107.
[23]
J. Harris,; B. Ridley, High field transport in p type PbTe. J. Phys. C Solid State Phys. 1972, 5, 2746-2756.
[24]
Y. H. Ni,; Y. M. Zhang,; J. M. Hong, Potentiostatic electrodeposition route for quick synthesis of featherlike PbTe dendrites: Influencing factors and shape evolution. Cryst. Growth Des. 2011, 11, 2142-2148.
[25]
M. Bala,; A. Bhogra,; S. A. Khan,; T. S. Tripathi,; S. K. Tripathi,; D. K. Avasthi,; K. Asokan, Enhancement of thermoelectric power of PbTe thin films by Ag ion implantation. J. Appl. Phys. 2017, 121, 215301.
[26]
M. A. Baghchesara,; R. Yousefi,; M. Cheraghizade,; F. Jamali-Sheini,; A. Saáedi,; M. R. Mahmmoudian, A simple method to fabricate an NIR detector by PbTe nanowires in a large scale. Mater. Res. Bull. 2016, 77, 131-137.
[27]
X. X. Gong,; G. T. Fei,; W. B. Fu,; B. N. Zhong,; X. D. Gao,; L. D. Zhang, Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time. Appl. Surf. Sci. 2017, 404, 7-11.
[28]
S. S. Ma,; K. Li,; H. L. Xu,; J. Q. Zhu,; H. M. Zhu,; H. Z. Wu, Lattice-mismatched PbTe/ZnTe heterostructure with high-speed midinfrared photoresponses. ACS Appl. Mater. Interfaces 2019, 11, 39342-39350.
[29]
B. Lewis,; D. Stirland, Growth and morphology of epitaxial lead telluride deposits on rocksalt. J. Cryst. Growth 1968, 3-4, 200-205.
[30]
Y. Wen,; Q. S. Wang,; L. Yin,; Q. Liu,; F. Wang,; F. M. Wang,; Z. X. Wang,; K. L. Liu,; K. Xu,; Y. Huang, et al. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater. 2016, 28, 8051-8057.
[31]
J. P. Ji,; X. F. Song,; J. Z. Liu,; Z. Yan,; C. X. Huo,; S. L. Zhang,; M. Su,; L. Liao,; W. H. Wang,; Z. H. Ni, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.
[32]
H. Li,; J. Cao,; W. S. Zheng,; Y. L. Chen,; D. Wu,; W. H. Dang,; K. Wang,; H. L. Peng,; Z. F. Liu, Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132-6135.
[33]
A. B. Gite,; B. Palve,; V. B. Gaikwad,; G. H. Jain,; H. M. Pathan, Synthesis and characterization of electrodeposited lead telluride films on copper and stainless steel substrate. Mater. Res. Express. 2019, 6, 075903.
[34]
N. Tschirner,; H. Lange,; K. Lambert,; Z. Hens,; C. Thomsen, Raman spectroscopy of PbTe/CdTe nanocrystals. Phys. Status Solidi B 2011, 248, 2748-2750.
[35]
V. Gervilla,; G. A. Almyras,; F. Thunström,; J. E. Greene,; K. Sarakinos, Dynamics of 3D-island growth on weakly-interacting substrates. Appl. Surf. Sci. 2019, 488, 383-390.
[36]
B. P. Zhang,; C. F. Cai,; H. Zhu,; F. F. Wu,; Z. Y. Ye,; Y. Y. Chen,; R. F. Li,; W. G. Kong,; H. Z. Wu, Phonon blocking by two dimensional electron gas in polar CdTe/PbTe heterojunctions. Appl. Phys. Lett. 2014, 104, 161601.
[37]
Q. S. Wang,; M. Safdar,; K. Xu,; M. Mirza,; Z. X. Wang,; J. He, Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497-7505.
[38]
Y. G. Wang,; L. Gan,; J. N. Chen,; R. Yang,; T. Y. Zhai, Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. 2017, 62, 1654-1662.
[39]
N. N. Li,; Y. Wen,; R. Q. Cheng,; L. Yin,; F. Wang,; J. Li,; T. A. Shifa,; L. P. Feng,; Z. X. Wang,; J. He, Strongly coupled van der Waals heterostructures for high-performance infrared phototransistor. Appl. Phys. Lett. 2019, 114, 103501.
[40]
J. P. Heremans,; V. Jovovic,; E. S. Toberer,; A. Saramat,; K. Kurosaki,; A. Charoenphakdee,; S. Yamanaka,; G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554-557.
[41]
H. Z. Wu,; C. F. Cao,; J. X. Si,; T. N. Xu,; H. J. Zhang,; H. F. Wu,; J. Chen,; W. Z. Shen,; N. Dai, Observation of phonon modes in epitaxial PbTe films grown by molecular beam epitaxy. J. Appl. Phys. 2007, 101, 103505.
[42]
J. Yang,; W. Z. Yu,; Z. H. Pan,; Q. Yu,; Q. Yin,; L. Guo,; Y. F. Zhao,; T. Sun,; Q. L. Bao,; K. Zhang, Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.
[43]
X. D. Wang,; P. Wang,; J. L. Wang,; W. D. Hu,; X. H. Zhou,; N. Guo,; H. Huang,; S. Sun,; H. Shen,; T. Lin, et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575-6581.
[44]
D. S. Zheng,; J. L. Wang,; W. D. Hu,; L. Liao,; H. H. Fang,; N. Guo,; P. Wang,; F. Gong,; X. D. Wang,; Z. Y. Fan, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors. Nano Lett. 2016, 16, 2548-2555.
Nano Research
Pages 1955-1960
Cite this article:
Zhao X, Yin Q, Huang H, et al. Van der Waals epitaxy of ultrathin crystalline PbTe nanosheets with high near-infrared photoelectric response. Nano Research, 2021, 14(6): 1955-1960. https://doi.org/10.1007/s12274-020-2834-5
Topics:
Part of a topical collection:

935

Views

23

Crossref

N/A

Web of Science

24

Scopus

4

CSCD

Altmetrics

Received: 16 March 2020
Revised: 13 April 2020
Accepted: 25 April 2020
Published: 22 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return