AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

2D nanomaterials for tissue engineering application

Jingyang Zhang1Haolin Chen1Meng Zhao2Guiting Liu1( )Jun Wu1,3( )
Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
Shenzhen Lansi Institute of Artificial Intelligence in Medicine, Shenzhen 518057, China
Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen 518057, China
Show Author Information

Graphical Abstract

Abstract

Recently, tissue engineering has developed into a powerful tool for repairing and reconstructing damaged tissues and organs. Tissue engineering scaffolds play a vital role in tissue engineering, as they not only provide structural support for targeted cells but also serve as templates that guide tissue regeneration and control the tissue structure. Over the past few years, owing to unique physicochemical properties and excellent biocompatibility, various types of two-dimensional (2D) nanomaterials have been developed as candidates for the construction of tissue engineering scaffolds, enabling remarkable achievements in bone repair, wound healing, neural regeneration, and cardiac tissue engineering. These efforts have significantly advanced the development of tissue engineering. In this review, we summarize the latest advancements in the application of 2D nanomaterials in tissue engineering. First, each typical 2D nanomaterial is introduced briefly, followed by a detailed description of its applications in tissue engineering. Finally, the existing challenges and prospects for the future of the application of 2D nanomaterials in tissue engineering are discussed.

References

[1]
Léonard, F.; Talin, A. A. Electrical contacts to one- and two- dimensional nanomaterials. Nat. Nanotechnol. 2011, 6, 773-783.
[2]
Kim, M. H.; Hur, W.; Choi, G.; Min, H. S.; Choi, T. H.; Choy, Y. B.; Choy, J. H. Theranostic bioabsorbable bone fixation plate with drug-layered double hydroxide nanohybrids. Adv. Healthc. Mater. 2016, 5, 2765-2775.
[3]
Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Healthc. Mater. 2019, 29, 1808306.
[4]
Liu, Z. M.; Chen, H. L.; Jia, Y. L.; Zhang, W.; Zhao, H. A.; Fan, W. D.; Zhang, W. L.; Zhong, H. Q.; Ni, Y. R.; Guo, Z. Y. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale 2018, 10, 18795-18804.
[5]
Shah, S.; Yin, P. T.; Uehara, T. M.; Chueng, S. T. D.; Yang, L. T.; Lee, K. B. Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv. Mater. 2014, 26, 3673-3680.
[6]
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[7]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[8]
Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. Adv. Mater. 2016, 28, 6052-6074.
[9]
Tu, Z. X.; Guday, G.; Adeli, M.; Haag, R. Multivalent interactions between 2D nanomaterials and biointerfaces. Adv. Mater. 2018, 30, 1706709.
[10]
Chen, W. S.; Ouyang, J.; Yi, X. Y.; Xu, Y.; Niu, C. C.; Zhang, W. Y.; Wang, L. Q.; Sheng, J. P.; Deng, L.; Liu, Y. N. et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.
[11]
Guo, Z. N.; Chen, S.; Wang, Z. Z.; Yang, Z. Y.; Liu, F.; Xu, Y. H.; Wang, J. H.; Yi, Y.; Zhang, H.; Liao, L. et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.
[12]
Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[13]
Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[14]
Wang, S. H.; Shao, J. D.; Li, Z. B.; Ren, Q. Z.; Yu, X. F.; Liu, S. J. Black phosphorus-based multimodal nanoagent: Showing targeted combinatory therapeutics against cancer metastasis. Nano Lett. 2019, 19, 5587-5594.
[15]
Lee, H. U.; Park, S. Y.; Lee, S. C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K. S.; Park, H. G. et al. Black Phosphorus (BP) nanodots for potential biomedical applications. Small. 2016, 12, 214-9.
[16]
Banerjee, A. N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 20170056.
[17]
Munhoz, D. R.; Bernardo, M. P.; Malafatti, J. O. D.; Moreira, F. K. V.; Mattoso, L. H. C. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int. J. Biol. Macromol. 2019, 141, 504-510.
[18]
Kenry; Lee, W. C.; Loh, K. P.; Lim, C. T. When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 2018, 155, 236-250.
[19]
Feng, L. Z.; Liu, Z. Graphene in biomedicine: Opportunities and challenges. Nanomedicine 2011, 6, 317-324.
[20]
Lu, N.; Wang, L. Q.; Lv, M.; Tang, Z. S.; Fan, C. H. Graphene-based nanomaterials in biosystems. Nano Res. 2019, 12, 247-264.
[21]
Diez-Pascual, A. M.; Diez-Vicente, A. L. Poly (propylene fumarate)/polyethylene glycol-modified graphene oxide nanocomposites for tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902-17914.
[22]
Park, K. O.; Lee, J. H.; Park, J. H.; Shin, Y. C.; Huh, J. B.; Bae, J. H.; Kang, S. H.; Hong, S. W.; Kim, B.; Yang, D. J. et al. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: Spectroscopic analysis and animal study. Appl. Spectrosc. Rev. 2016, 51, 540-551.
[23]
Zhao, Y.; Chen, J. D.; Zou, L.; Xu, G.; Geng, Y. S. Facile one-step bioinspired mineralization by chitosan functionalized with graphene oxide to activate bone endogenous regeneration. Chem. Eng. J. 2019, 378, 122174.
[24]
Lee, J. H.; Shin, Y. C.; Lee, S. M.; Jin, O. S.; Kang, S. H.; Hong, S. W.; Jeong, C. M.; Huh, J. B.; Han, D. W. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep. 2015, 5, 18833.
[25]
Liang, C. Y.; Luo, Y. C.; Yang, G. D.; Xia, D.; Liu, L.; Zhang, X. M.; Wang, H. S. Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells. Nanoscale Res. Lett. 2018, 13, 15.
[26]
Aidun, A.; Firoozabady, A. S.; Moharrami, M.; Ahmadi, A.; Haghighipour, N.; Bonakdar, S.; Faghihi, S. Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering. Artif. Organs 2019, 43, E264-E281.
[27]
Jabbari, F.; Hesaraki, S.; Houshmand, B. The physical, mechanical, and biological properties of silk fibroin/chitosan/reduced graphene oxide composite membranes for guided bone regeneration. J. Biomat. Sci. Polym. Ed. 2019, 30, 1779-1802.
[28]
Olad, A.; Hagh, H. B. K.; Mirmohseni, A.; Azhar, F. F. Graphene oxide and montmorillonite enriched natural polymeric scaffold for bone tissue engineering. Ceram. Int. 2019, 45, 15609-15619.
[29]
Gardin, C.; Piattelli, A.; Zavan, B. Graphene in regenerative medicine: Focus on stem cells and neuronal differentiation. Trends Biotechnol. 2016, 34, 435-437.
[30]
Weaver, C. L.; Cui, X. T. Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv. Healthc. Mater. 2015, 4, 1408-1416.
[31]
Tang, M. L.; Song, Q.; Li, N.; Jiang, Z. Y.; Huang, R.; Cheng, G. S. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 2013, 34, 6402-6411.
[32]
Serrano, M. C.; Patiño, J.; García-Rama, C.; Ferrer, M. L.; Fierro, J. L. G.; Tamayo, A.; Collazos-Castro, J. E.; Del Monte, F.; Gutiérrez, M. C. 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J. Mater. Chem. B. 2014, 2, 5698-5706.
[33]
Yang, D. H.; Li, T.; Xu, M. H.; Gao, F.; Yang, J.; Yang, Z.; Le, W. D. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine 2014, 9, 2445-2455.
[34]
Nezakati, T.; Tan, A.; Lim, J.; Cormia, R. D.; Teoh, S. H.; Seifalian, A. M. Ultra-low percolation threshold POSS-PCL/graphene electrically conductive polymer: Neural tissue engineering nanocomposites for neurosurgery. Mater. Sci. Eng. C 2019, 104, 109915.
[35]
Lee, J.; Manoharan, V.; Cheung, L.; Lee, S.; Cha, B. H.; Newman, P.; Farzad, R.; Mehrotra, S.; Zhang, K.; Khan, F. et al. Nanoparticle-based hybrid scaffolds for deciphering the role of multimodal cues in cardiac tissue engineering. ACS Nano. 2019, 13, 12525-12539.
[36]
Paul, A.; Hasan, A.; Al Kindi, H.; Gaharwar, A. K.; Rao, V. T. S.; Nikkhah, M.; Shin, S. R.; Krafft, D.; Dokmeci, M. R.; Shum-Tim, D. et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano. 2014, 8, 8050-8062.
[37]
Choe, G.; Kim, S. W.; Park, J.; Park, J.; Kim, S.; Kim, Y. S.; Ahn, Y.; Jung, D. W.; Williams, D. R.; Lee, J. Y. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 2019, 225, 119513.
[38]
Saravanan, S.; Sareen, N.; Abu-El-Rub, E.; Ashour, H.; Sequiera, G. L.; Ammar, H. I.; Gopinath, V.; Shamaa, A. A.; Sayed, S. S. E.; Moudgil, M. et al. Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci. Rep. 2018, 8, 15069.
[39]
Ghasemi, A.; Imani, R.; Yousefzadeh, M.; Bonakdar, S.; Solouk, A.; Fakhrzadeh, H. Studying the potential application of electrospun polyethylene terephthalate/graphene oxide nanofibers as electroconductive cardiac patch. Macromol. Mater. Eng. 2019, 304, 1900187.
[40]
Jiang, L. L.; Chen, D. Y.; Wang, Z.; Zhang, Z. M.; Xia, Y. L.; Xue, H. Y.; Liu, Y. Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering. Appl. Biochem. Biotechnol. 2019, 188, 952-964.
[41]
Nazari, H.; Azadi, S.; Hatamie, S.; Zomorrod, M. S.; Ashtari, K.; Soleimani, M.; Hosseinzadeh, S. Fabrication of graphene-silver/polyurethane nanofibrous scaffolds for cardiac tissue engineering. Polym. Adv. Technol. 2019, 30, 2086-2099.
[42]
Norahan, M. H.; Pourmokhtari. M.; Saeb, M. R.; Bakhshi, B.; Zomorrod, M. S.; Baheiraei, N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. Mater. Sci. Eng. C 2019, 104, 109921.
[43]
Stone, H.; Lin, S. G.; Mequanint, K. Preparation and characterization of electrospun rGO-poly (ester amide) conductive scaffolds. Mater. Sci. Eng. C 2019, 98, 324-332.
[44]
Zargar, S. M.; Mehdikhani, M.; Rafienia, M. Reduced graphene oxide-reinforced gellan gum thermoresponsive hydrogels as a myocardial tissue engineering scaffold. J. Bioact. Compat. Polm. 2019, 34, 331-345.
[45]
Zhao, L. A novel graphene oxide polymer gel platform for cardiac tissue engineering application. 3 Biotech 2019, 9, 401.
[46]
Shin, S. R.; Aghaei-Ghareh-Bolagh, B.; Gao, X. G.; Nikkhah, M.; Jung, S. M.; Dolatshahi-Pirouz, A.; Kim, S. B.; Kim, S. M.; Dokmeci, M. R.; Tang, X. W. et al. Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv. Funct. Mater. 2014, 24, 6136-6144.
[47]
Zhang, F.; Zhang, N.; Meng, H. X.; Liu, H. X.; Lu, Y. Q.; Liu, C. M.; Zhang, Z. M.; Qu, K. Y.; Huang, N. P. Easy applied gelatin-based hydrogel system for long-term functional cardiomyocyte culture and myocardium formation. ACS Biomater. Sci. Eng. 2019, 5, 3022-3031.
[48]
Shin, S. R.; Li, Y. C.; Jang, H. L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y. S.; Tamayol, A.; Khademhosseini, A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 2016, 105, 255-274.
[49]
Zhou, M.; Lozano, N.; Wychowaniec, J. K.; Hodgkinson, T.; Richardson, S. M.; Kostarelos, K.; Hoyland, J. A. Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater. 2019, 96, 271-280.
[50]
Holmes, B.; Fang, X. Q.; Zarate, A.; Keidar, M.; Zhang, L. G. Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon 2016, 97, 1-13.
[51]
Deliormanlı, A. M.; Atmaca, H. Biological response of osteoblastic and chondrogenic cells to graphene-containing PCL/bioactive glass bilayered scaffolds for osteochondral tissue engineering applications. Appl. Biochem. Biotech. 2018, 186, 972-989.
[52]
Deliormanlı, A. M. Direct write assembly of graphene/poly (ε-Caprolactone) composite scaffolds and evaluation of their biological performance using mouse bone marrow mesenchymal stem cells. Appl. Biochem. Biotech. 2019, 188, 1117-1133.
[53]
Lee, E. J.; Lee, J. H.; Shin, Y. C.; Hwang, D. G.; Kim, J. S.; Jin, O. S.; Jin, L. H.; Hong, S. W.; Han, D. W. Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater. Res. 2014, 18, 18-24.
[54]
Li, Z. H.; Wang, H. Q.; Yang, B.; Sun, Y. K.; Huo, R. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater. Sci. Eng. C 2015, 57, 181-188.
[55]
Azarniya, A.; Eslahi, N.; Mahmoudi, N.; Simchi, A. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos. Part. A Appl. Sci Manuf. 2016, 85, 113-122.
[56]
Mahmoudi, N.; Simchi, A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Mater. Sci. Eng. C 2017, 70, 121-131.
[57]
Chu, J.; Shi, P. P.; Yan, W. X.; Fu, J. P.; Yang, Z.; He, C. M.; Deng, X. Y.; Liu, H. P. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing. Nanoscale 2018, 10, 9547-9560.
[58]
Hussein, K. H.; Abdelhamid, H. N.; Zou, X. D.; Woo, H. M. Ultrasonicated graphene oxide enhances bone and skin wound regeneration. Mater. Sci. Eng. C 2019, 94, 484-492.
[59]
Liang, Y. P.; Zhao, X.; Hu, T. L.; Chen, B. J.; Yin, Z. H.; Ma, P. X.; Guo, B. L. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 2019, 15, 1900046.
[60]
Chaudhuri, B.; Bhadra, D.; Moroni, L.; Pramanik, K. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: Importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 2015, 7, 015009.
[61]
Chaudhuri, B.; Mondal, B.; Kumar, S.; Sarkar, S. C. Myoblast differentiation and protein expression in electrospun graphene oxide (GO)-poly (ε-caprolactone, PCL) composite meshes. Mater. Lett. 2016, 182, 194-197.
[62]
Patel, A.; Xue, Y. F.; Mukundan, S.; Rohan, L. C.; Sant, V.; Stolz, D. B.; Sant, S. Cell-instructive graphene-containing nanocomposites induce multinucleated myotube formation. Ann. Biomed. Eng. 2016, 44, 2036-2048.
[63]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[64]
Luo, M. M.; Fan, T. J.; Zhou, Y.; Zhang, H.; Mei, L. 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.
[65]
Raucci, M. G.; Fasolino, I.; Caporali, M.; Serrano-Ruiz, M.; Soriente, A.; Peruzzini, M.; Ambrosio, L. Exfoliated black phosphorus promotes in vitro bone regeneration and suppresses osteosarcoma progression through cancer-related inflammation inhibition. ACS Appl. Mater. Interfaces 2019, 11, 9333-9342.
[66]
Huang, K. Q.; Wu, J.; Gu, Z. P. Black phosphorus hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Appl. Mater. Interfaces 2019, 11, 2908-2916.
[67]
Liu, X. F.; Miller II, A. L.; Park, S.; George, M. N.; Waletzki, B. E.; Xu, H. C.; Terzic, A.; Lu, L. C. Two-dimensional black phosphorus and graphene oxide nanosheets synergistically enhance cell proliferation and osteogenesis on 3D printed scaffolds. ACS Appl. Mater. Interfaces 2019, 11, 23558-23572.
[68]
Miao, Y. L.; Shi, X. T.; Li, Q. T.; Hao, L. J.; Liu, L.; Liu, X.; Chen, Y. H.; Wang, Y. J. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater. Sci. 2019, 7, 4046-4059.
[69]
Yang, B. W.; Yin, J. H.; Chen, Y.; Pan, S. S.; Yao, H. L.; Gao, Y. S.; Shi, J. L. 2D-black-phosphorus-reinforced 3D-printed scaffolds: A stepwise countermeasure for osteosarcoma. Adv. Mater. 2018, 30, 1705611.
[70]
Tong, L. P.; Liao, Q.; Zhao, Y. T.; Huang, H.; Gao, A.; Zhang, W.; Gao, X. Y.; Wei, W.; Guan, M.; Chu, P. K. et al. Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials 2019, 193, 1-11.
[71]
Wang, Y. Q.; Hu, X. X.; Zhang, L. L.; Zhu, C. L.; Wang, J.; Li, Y. X.; Wang, Y. L.; Wang, C.; Zhang, Y. F.; Yuan, Q. Bioinspired extracellular vesicles embedded with black phosphorus for molecular recognition-guided biomineralization. Nat. Commun. 2019, 10, 2829.
[72]
Huang, X. W.; Wei, J. J.; Zhang, M. Y.; Zhang, X. L.; Yin, X. F.; Lu, C. H.; Song, J. B.; Bai, S. M.; Yang, H. H. Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications. ACS Appl. Mater. Interfaces 2018, 10, 35495-35502.
[73]
Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F.; Yeung, K. W. K.; Wu, S. L. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 2018, 12, 1747-1759.
[74]
Wang, Z. M.; Zhao, J.; Tang, W. Z.; Hu, L. Q.; Chen, X.; Su, Y. P.; Zou, C.; Wang, J. H.; Lu, W. W.; Zhen, W. X. et al. Multifunctional nanoengineered hydrogels consisting of black phosphorus nanosheets upregulate bone formation. Small 2019, 15, 1901560.
[75]
Wang, X. Z.; Shao, J. D.; El Raouf, M. A.; Xie, H. H.; Huang, H.; Wang, H. Y.; Chu, P. K.; Yu, X. F.; Yang, Y.; AbdEl-Aal, A. M. et al. Near-infrared light-triggered drug delivery system based on black phosphorus for in vivo bone regeneration. Biomaterials 2018, 179, 164-174.
[76]
Chen, W. S.; Ouyang, J.; Yi, X. Y.; Xu, Y.; Niu, C. C.; Zhang, W. Y.; Wang, L. Q. ; Sheng, J. P.; Deng, L.; Liu, Y. N. et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.
[77]
Qian, Y.; Yuan, W. E.; Cheng, Y.; Yang, Y. Q.; Qu, X. H.; Fan, C. Y. Concentrically integrative bioassembly of a three-dimensional black phosphorus nanoscaffold for restoring neurogenesis, angiogenesis, and immune homeostasis. Nano Lett. 2019, 19, 8990-9001.
[78]
Xie, H. H.; Shao, J. D.; Ma, Y. F.; Wang, J. H.; Huang, H.; Yang, N.; Wang, H. Y.; Ruan, C. S.; Luo, Y. F.; Wang, Q. Q. et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 2018, 164, 11-21.
[79]
Shao, J. D.; Ruan, C. S.; Xie, H. H.; Li, Z. B.; Wang, H. Y.; Chu, P. K.; Yu, X. F. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 2018, 5, 1700848.
[80]
Gaharwar, A. K.; Cross, L. M.; Peak, C. W.; Gold, K.; Carrow, J. K.; Brokesh, A.; Singh, K. A. 2D nanoclay for biomedical applications: Regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 2019, 31, 1900332.
[81]
Chen, Y. X.; Zhu, R.; Ke, Q. F.; Gao, Y. S.; Zhang, C. Q.; Guo, Y. P. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. Nanoscale 2017, 9, 6765-6776.
[82]
Fayyazbakhsh, F.; Solati-Hashjin, M.; Keshtkar, A.; Shokrgozar, M. A.; Dehghan, M. M.; Larijani, B. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. Mater. Sci. Eng. C 2017, 76, 701-714.
[83]
Peng, F.; Wang, D. H.; Zhang, D. D.; Yan, B. C.; Cao, H. L.; Qiao, Y. Q.; Liu, X. Y. PEO/Mg-Zn-Al LDH composite coating on Mg alloy as a Zn/Mg ion-release platform with multifunctions: Enhanced corrosion resistance, osteogenic, and antibacterial activities. ACS Biomater. Sci. Eng. 2018, 4, 4112-4121.
[84]
Cao, D. D.; Xu, Z. L.; Chen, Y. X.; Ke, Q. F.; Zhang, C. Q.; Guo, Y. P. Ag-loaded MgSrFe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 863-873.
[85]
Fayyazbakhsh, F.; Solati-Hashjin, M.; Shokrgozar, M. A.; Bonakdar, S.; Ganji, Y.; Mirjordavi, N.; Ghavimi, S. A.; Khashayar, P. Biological evaluation of a novel tissue engineering scaffold of Layered Double Hydroxides (LDHs). Key Eng. Mater. 2011, 493-494, 902-908.
[86]
Fayyazbakhsh, F.; Solati-Hashjin, M.; Keshtkar, A.; Shokrgozar, M. A.; Dehghan, M. M.; Larijani, B. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Colloids Surf. B Biointerfaces 2017, 158, 697-708.
[87]
Ramanathan, G.; Sobhana, S. S. L.; Fardim, P.; Sivagnanam, U. T. Fabrication of 3D dual-layered nanofibrous graft loaded with layered double hydroxides and their effects in osteoblastic behavior for bone tissue engineering. Process Biochem. 2018, 64, 255-259.
[88]
Piao, H.; Kim, M. H.; Cui, M.; Choi, G.; Choy, J. H. Alendronate-anionic clay nanohybrid for enhanced osteogenic proliferation and differentiation. J. Korean Med. Sci. 2019, 34, e37.
[89]
Kieke, M. D. K.; Weizbauer, A.; Duda, F.; Badar, M.; Budde, S.; Flörkemeier, T.; Diekmann, J.; Prenzler, N.; Rahim, M. I.; Müller, P. P. et al. Evaluating a novel class of biomaterials: Magnesium-containing layered double hydroxides. Biomed. Tech. 2013, 58 Suppl 1.
[90]
Weizbauer, A.; Kieke, M.; Rahim, M. I.; Angrisani, G. L.; Willbold, E.; Diekmann, J.; Flörkemeier, T.; Windhagen, H.; Müller, P. P.; Behrens, P. et al. Magnesium-containing layered double hydroxides as orthopaedic implant coating materials-an in vitro and in vivo study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 525-531.
[91]
Figueiredo, M. P.; Cunh, V. R. R.; Leroux, F.; Taviot-Gueho, C.; Nakamae, M. N.; Kang, Y. R.; Souza, R. B.; Martins, A. M. C. R. P. F.; Koh, I. H. J.; Constantino, V. R. L. Iron-based layered double hydroxide implants: Potential drug delivery carriers with tissue biointegration promotion and blood microcirculation preservation. ACS Omega 2018, 3, 18263-18274.
[92]
Singh, N. K.; Nguyen, Q. V.; Kim, B. S.; Lee, D. S. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, PH/temperature responsive nanobiohybrid hydrogel. Nanoscale 2015, 7, 3043-3054.
[93]
Kang, H. R.; Da Costa Fernandes, C. J.; da Silva, R. A.; Constantino, V. R. L.; Koh, I. H. J.; Zambuzzi, W. F. Mg-Al and Zn-Al layered double hydroxides promote dynamic expression of marker genes in osteogenic differentiation by modulating mitogen-activated protein kinases. Adv. Healthc. Mater. 2018, 7, 1700693.
[94]
Bernardo, M. P.; Ribeiro, C. Zn-Al-based layered double hydroxides (LDH) active structures for dental restorative materials. J. Mater. Res. Tech. 2019, 8, 1250-1257.
[95]
Moghanizadeh-Ashkezari, M.; Shokrollahi, P.; Zandi, M.; Shokrolahi, F.; Daliri, M. J.; Kanavi, M. R.; Balagholi, S. Vitamin C loaded poly (urethane-urea)/ZnAl-LDH aligned scaffolds increase proliferation of corneal keratocytes and up-regulate vimentin secretion. ACS Appl. Mater. Interfaces 2019, 11, 35525-35539.
[96]
Shafiei, S. S.; Shavandi, M.; Ahangari, G.; Shokrolahi, F. Electrospun layered double hydroxide/poly (ε-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Appl. Clay. Sci. 2016, 127-128, 52-63.
[97]
Galateanu, B.; Radu, I. C.; Vasile, E.; Hudita, A.; Serban, M. V.; Costache, M.; Iovu, H.; Zaharia, C. Fabrication of novel silk fibroin-LDHs composite arhitectures for potential bone tissue engineering. Mater. Plast. 2017, 54, 659-665.
[98]
Li, Q. W.; Wang, D. H.; Qiu, J. J.; Peng, F.; Liu, X. Y. Regulating the local PH level of titanium via Mg-Fe layered double hydroxides films for enhanced osteogenesis. Biomater. Sci. 2018, 6, 1227-1237.
[99]
Bunea, M. C.; Galateanu, B.; Vasile, E.; Zaharia, C.; Stanescu, P. O.; Andronescu, C.; Radu, I. C.; Fuchs, R.; Iovu, H. Novel biocomposites based on polyhydroxyalkanoates-layered double hydroxides for tissue engineering applications. U.P.B. Sci. Bull. Series B 2016, 78, 81-90.
[100]
Cunha, V. R. R.; De Souza, R. B.; Da Fonseca Martins, A. M. C. R. P.; Koh, I. H. J.; Constantino, V. R. L. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: Histological and microcirculation evaluation. Sci. Rep. 2016, 6, 30547.
[101]
Radu, I. C.; Vasile, E.; Damian, C. M.; Iovu, H.; Stanescu, P. O.; Zaharia, C. Influence of the double bond LDH clay on the exfoliation/intercalation mechanism of polyacrylamide nanocomposite hydrogels. Mater. Plast. 2018, 55, 263-268.
[102]
Zhang, Y. P.; Ji, J. W.; Li, H. P.; Du, N.; Song, S.; Hou, W. G. Synthesis of layered double hydroxide/poly(N-isopropylacrylamide) nanocomposite hydrogels with excellent mechanical and thermoresponsive performances. Soft Matter 2018, 14, 1789-1798.
[103]
Wang, S.; Zhang, Z. F.; Dong, L. F.; Waterhouse, G. I. N.; Zhang, Q. H.; Li, L. F. A remarkable thermosensitive hydrogel cross-linked by two inorganic nanoparticles with opposite charges. J. Colloid Interf. Sci. 2019, 538, 530-540.
[104]
Chakraborti, M.; Jackson, J. K.; Plackett, D.; Brunette, D. M.; Burt, H. M. Drug intercalation in layered double hydroxide clay: Application in the development of a nanocomposite film for guided tissue regeneration. Int. J. Pharm. 2011, 416, 305-313.
[105]
Huang, H. Q.; Xu, J. B.; Wei, K. C.; Xu, Y. J.; Choi, C. K. K.; Zhu, M. L.; Bian, L. M. Bioactive nanocomposite poly (ethylene glycol) hydrogels crosslinked by multifunctional layered double hydroxides nanocrosslinkers. Macromol. Biosci. 2016, 16, 1019-1026.
[106]
Yang, H. Y.; Van Ee, R. J.; Timmer, K.; Craenmehr, E. G. M.; Huang, J. H.; Öner, F. C.; Dhert, W. J. A.; Kragten, A. H. M.; Willems, N.; Grinwis, G. C. M. et al. A novel injectable thermoresponsive and cytocompatible gel of poly (N-isopropylacrylamide) with layered double hydroxides facilitates siRNA delivery into chondrocytes in 3D culture. Acta Biomater. 2015, 23, 214-228.
[107]
Wang, P.; Wei, Z.-Y.; Cheng, J.; Liu, L. Preparation and characterization of a novel hybrid copolymer hydrogel with poly(ethylene glycol) dimethacrylate, 2-hydroxyethyl methacrylate and layered double hydroxides. Journal of Shanghai Jiaotong University (Science) 2012, 17, 712-16.
[108]
Kapusetti, G.; Misra, N.; Singh, V.; Kushwaha, R. K.; Maiti, P. Bone cement/layered double hydroxide nanocomposites as potential biomaterials for joint implant. J. Biomed. Mater. Res. Part A 2012, 100A, 3363-3373.
[109]
Kim, M. H.; Park, D. H.; Yang, J. H.; Choy, Y. B.; Choy, J. H. Drug-inorganic-polymer nanohybrid for transdermal delivery. Int. J. Pharm. 2013, 444, 120-127.
[110]
Harris, K. J.; Bugnet, M.; Naguib, M.; Barsoum, M. W.; Goward, G. R. Direct measurement of surface termination groups and their connectivity in the 2D Mxene V2CTx using NMR spectroscopy. J. Phys. Chem. C 2015, 119, 13713-13720.
[111]
Annunziata, M.; Oliva, A.; Basile, M. A.; Giordano, M.; Mazzola, N.; Rizzo, A.; Lanza, A.; Guida, L. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces. J. Dent. 2011, 39, 720-728.
[112]
Veronesi, F.; Giavaresi, G.; Fini, M.; Longo, G.; Ioannidu, C. A.; d'Abusco, A. S.; Superti, F.; Panzini, G.; Misiano, C.; Palattella, A. et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater. Sci. Eng. C 2017, 70, 264-271.
[113]
Chen, K.; Qiu, N. X.; Deng, Q. H.; Kang, M. H.; Yang, H.; Baek, J. U.; Koh, Y. H.; Du, S. Y.; Huang, Q.; Kim, H. E. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: In vitro tests and first-principles calculations. ACS Biomater. Sci. Eng. 2017, 3, 2293-2301.
[114]
Mayerberger, E. A.; Street, R. M.; McDaniel, R. M.; Barsoum, M. W.; Schauer, C. L. Antibacterial properties of electrospun Ti3C2Tz (MXene)/Chitosan nanofibers. RSC Adv. 2018, 8, 35386-35394.
[115]
Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J., Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891-2912.
[116]
Subramanian, B.; Muraleedharan, C. V.; Ananthakumar, R.; Jayachandran, M. A comparative study of titanium nitride (TiN), titanium oxy nitride (TiON) and titanium aluminum nitride (TiAlN), as surface coatings for bio implants. Surf. Coat. Technol. 2011, 205, 5014-5020.
[117]
Jeong, Y. H.; Lee, C. H.; Chung, C. H.; Son, M. K.; Choe, H. C. Effects of TiN and WC coating on the fatigue characteristics of dental implant. Surf. Coat. Technol. 2014, 243, 71-81.
[118]
Chen, K.; Chen, Y. H.; Deng, Q. H.; Jeong, S. H.; Jang, T. S.; Du, S. Y.; Kim, H. E.; Huang, Q.; Han, C. M. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater. Lett. 2018, 229, 114-117.
[119]
Ramezani, M. R.; Ansari-Asl, Z.; Hoveizi, E.; Kiasat, A. R. Polyacrylonitrile/Fe(III) metal-organic framework fibrous nanocomposites designed for tissue engineering applications. Mater. Chem. Phys. 2019, 229, 242-250.
[120]
Wu, S. Y.; Wang, J. D.; Jin, L.; Li, Y.; Wang, Z. L. Effects of polyacrylonitrile/MoS2 composite nanofibers on the growth behavior of bone marrow mesenchymal stem cells. ACS Appl. Nano Mater. 2018, 1, 337-343.
[121]
Unal, S.; Ekren, N.; Sengil, A. Z.; Oktar, F. N.; Irmak, S.; Oral, O.; Sahin, Y. M.; Kilic, O.; Agathopoulos, S.; Gunduz, O. Synthesis, characterization, and biological properties of composites of hydroxyapatite and hexagonal boron nitride. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2384-2392.
[122]
Lei, Z. Y.; Zhou, Y. Y.; Wu, P. Y. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “Smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small 2016, 12, 3112-3118.
[123]
Wang, K.; Li, N.; Hai, X. M.; Dang, F. Q. Lysozyme-mediated fabrication of well-defined core-shell nanoparticle@metal-organic framework nanocomposites. J. Mater. Chem. A 2017, 5, 20765-20770.
[124]
Márquez, A. G.; Hidalgo, T.; Lana, H.; Cunha, D.; Blanco-Prieto, M. J.; Álvarez-Lorenzo, C.; Boissière, C.; Sánchez, C.; Serre, C.; Horcajada, P. Biocompatible polymer-metal-organic framework composite patches for cutaneous administration of cosmetic molecules. J. Mater. Chem. B 2016, 4, 7031-7040.
[125]
Ozbek, B.; Erdogan, B.; Ekren, N.; Oktar, F. N.; Akyol, S.; Ben-Nissan, B.; Sasmazel, H. T.; Kalkandelen, C.; Mergen, A.; Kuruca, S. E. et al. Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. J. Aust. Ceram. Soc. 2018, 54, 251-260.
[126]
Jing, L.; Li, H. L.; Tay, R. Y.; Sun, B.; Tsang, S. H.; Cometto, O.; Lin, J. J.; Teo, E. H. T.; Tok, A. I. Y. Biocompatible hydroxylated boron nitride nanosheets/poly(vinyl alcohol) interpenetrating hydrogels with enhanced mechanical and thermal responses. ACS Nano 2017, 11, 3742-3751.
[127]
Rakhshaei, R.; Namazi, H.; Hamishehkar, H.; Kafil, H. S.; Salehi, R. In situ synthesized chitosan-gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J. Appl. Polym. Sci. 2019, 136, 47590.
[128]
Artifon, W.; Pasini, S. M.; Valério, A.; González, S. Y. G.; De Arruda Guelli Ulson de Souza, S. M.; De Souza, A. A. U. Harsh environment resistant-antibacterial zinc oxide/polyetherimide electrospun composite scaffolds. Mater. Sci. Eng. C 2019, 103, 109859.
[129]
Jinga, S. I.; Zamfirescu, A. I.; Voicu, G.; Enculescu, M.; Evanghelidis, A.; Busuioc, C. PCL-ZnO/TiO2/HAP electrospun composite fibers with applications in tissue engineering. Polymers 2019, 11, 1793.
[130]
Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal-organic framework. Nat. Mater. 2010, 9, 565-571.
[131]
Cheng, L.; Wang, X. W.; Gong, F.; Liu, T.; Liu, Z. 2D nanomaterials for cancer theranostic applications. Adv. Mater. 2019, 32, 1902333.
Nano Research
Pages 2019-2034
Cite this article:
Zhang J, Chen H, Zhao M, et al. 2D nanomaterials for tissue engineering application. Nano Research, 2020, 13(8): 2019-2034. https://doi.org/10.1007/s12274-020-2835-4
Topics:

1162

Views

72

Crossref

N/A

Web of Science

74

Scopus

0

CSCD

Altmetrics

Received: 26 March 2020
Revised: 22 April 2020
Accepted: 25 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return