AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%

Xiaomei Li1,2Kaili Wang1Femi Lgbari1Chong Dong1Wenfan Yang1Chang Ma1Heng Ma2Zhao-Kui Wang1( )Liang-Sheng Liao1
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Henan Province Key Laboratory of Photovoltaic Materials, College of Physics & Materials Science, Henan Normal University, Xinxiang 453007, China
Show Author Information

Graphical Abstract

Abstract

In recent years, all-inorganic perovskite materials have set off a research boom owing to features, such as good thermal stability, suitable bandgap, and fascinating optical properties. However, the power conversion efficiency (PCE) and the ambient stability of all-inorganic perovskite solar cells still remain a challenge. Herein, we investigate the effect of the addition of InI3 into CsPbI3 film on the corresponding device. InI3 incorporation could retard the crystallization process and control the growth rate of CsPbI3 polycrystalline films, yielding a high quality film with large grains and few voids. The increment in electrostatic potential and the reduction of carrier recombination enabled the open-circuit voltage of fabricated perovskite solar cell to be increased from 0.89 to 0.99 V. The champion device delivered a power conversion efficiency of 17.09%, which is higher than 14.36% for the reference device. And the InI3-included solar cell without any encapsulation retained 77% of its original efficiency after 860 h aging at room temperature in N2 condition.

Electronic Supplementary Material

Download File(s)
12274_2020_2836_MOESM1_ESM.pdf (3.1 MB)

References

[1]
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
[2]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[3]
Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly (3-hexylthiophene). Nature 2019, 567, 511-515.
[5]
Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commu. 2015, 6, 7747.
[6]
Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682-689.
[7]
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542-546.
[8]
Misra, R. K.; Aharon, S.; Li, B. L.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 2015, 6, 326-330.
[9]
Niu, G. D.; Guo, X. D.; Wang, L. D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970-8980.
[10]
Xia, R.; Fei, Z. F.; Drigo, N.; Bobbink, F. D.; Huang, Z. J.; Jasiūnas, R.; Franckevičius, M.; Gulbinas, V.; Mensi, M.; Fang, X. D. et al. Retarding thermal degradation in hybrid perovskites by ionic liquid additives. Adv. Funct. Mater. 2019, 29, 1902021.
[11]
Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345-12348.
[12]
Wu, T. H.; Wang, Y. B.; Dai, Z. S.; Cui, D. Y.; Wang, T.; Meng, X. Y.; Bi, E. B.; Yang, X. D.; Han, L. Y. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 2019, 31, 1900605.
[13]
Liu, Y.; He, B. L.; Duan, J. L.; Zhao, Y. Y.; Ding, Y.; Tang, M. X.; Chen, H. Y.; Tang, Q. W. Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr3 perovskite solar cells. J. Mater. Chem. A 2019, 7, 12635-12644.
[14]
Wang, Z.; Baranwal, A. K.; Kamarudin, M. A.; Ng, C. H.; Pandey, M.; Ma, T. L.; Hayase, S. Xanthate-induced sulfur doped all-inorganic perovskite with superior phase stability and enhanced performance. Nano Energy 2019, 59, 258-267.
[15]
Gong, M. G.; Sakidja, R.; Goul, R.; Ewing, D.; Casper, M.; Stramel, A.; Elliot, A.; Wu, J. Z. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano 2019, 13, 1772-1783.
[16]
Kulbak, M.; Cahen, D.; Hodes, G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phy. Chem. Lett. 2015, 6, 2452-2456.
[17]
Chen, W.; Zhang, J.; Xu, G.; Xue, R.; Li, Y.; Zhou, Y.; Hou, J.; Li, Y. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 2018, 30, e1800855.
[18]
Wang, K. L.; Wang, R.; Wang, Z. K.; Li, M.; Zhang, Y.; Ma, H.; Liao, L. S.; Yang, Y. Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells. Nano Lett. 2019, 19, 5176-5184.
[19]
Zhou, L.; Guo, X.; Lin, Z. H.; Ma, J.; Su, J.; Hu, Z. S.; Zhang, C. F.; Liu, S. Z.; Chang, J. J.; Hao, Y. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 2019, 60, 583-590.
[20]
Wang, Y.; Liu, X. M.; Zhang, T. Y.; Wang, X. T.; Kan, M.; Shi, J. L.; Zhao, Y. X. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem., Int. Ed. 2019, 58, 16691-16696.
[21]
Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.
[22]
Zhang, T. Y.; Dar, M. I.; Li, G.; Xu, F.; Guo, N. J.; Grätzel, M.; Zhao, Y. X. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 2017, 3, e1700841.
[23]
Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219-2227.
[24]
Jena, A. K.; Kulkarni, A.; Sanehira, Y.; Ikegami, M.; Miyasaka, T. Stabilization of α-CsPbI3 in ambient room temperature conditions by incorporating Eu into CsPbI3. Chem. Mater. 2018, 30, 6668-6674.
[25]
Xiang, W. C.; Wang, Z. W.; Kubicki, D. J.; Tress, W.; Luo, J. S.; Prochowicz, D.; Akin, S.; Emsley, L.; Zhou, J. T.; Dietler, G. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 2019, 3, 205-214.
[26]
Zhao, H.; Xu, J.; Zhou, S. J.; Li, Z. Z.; Zhang, B.; Xia, X.; Liu, X. L.; Dai, S. Y.; Yao. J. X. Preparation of tortuous 3D γ-CsPbI3 films at low temperature by CaI2 as dopant for highly efficient perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1808986.
[27]
Liu, C.; Li, W. Z.; Li, H. Y.; Wang, H. M.; Zhang, C. L.; Yang, Y. G.; Gao, X. Y.; Xue, Q. F.; Yip, H. L.; Fan, J. D. et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803572.
[28]
Wang, Z. K.; Li, M.; Yang, Y. G.; Hu, Y.; Ma, H.; Gao, X. Y.; Liao, L. S. High efficiency Pb-In binary metal perovskite solar cells. Adv. Mater. 2016, 28, 6695-6703.
[29]
Luo, P. F.; Xia, W.; Zhou, S. W.; Sun, L.; Cheng, J. G.; Xu, C. X.; Lu, Y. W. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J. Phy. Chem. Lett. 2016, 7, 3603-3608.
[30]
Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Bai, D. L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 4544.
[31]
Wang, Y.; Zhang, T. Y.; Kan, M.; Li, Y. H.; Wang, T.; Zhao, Y. X. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2018, 2, 2065-2075.
[32]
Yang, M. J.; Zhang, T. Y.; Schulz, P.; Li, Z.; Li, G.; Kim, D. H.; Guo, N. J.; Berry, J. J.; Zhu, K.; Zhao, Y. X. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3 Br-selective Ostwald ripening. Nat. Commun. 2016, 7, 12305.
[33]
Zeng, Q. S.; Zhang, X. Y.; Feng, X. L.; Lu, S. Y.; Chen, Z. L.; Yong, X.; Redfern, S. A. T.; Wei, H. T.; Wang, H. Y.; Shen, H. Z. et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv. Mater. 2018, 30, 1705393.
[34]
Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M. Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 2017, 3, eaao4204.
[35]
Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Wang, H. R.; Feng, J. S.; Wang, Q.; Liu, S. Z. Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16%. Nano Energy 2019, 58, 175-182.
[36]
Thambidurai, M.; Shini, F.; Salim, K. M. M.; Harikesh, P. C.; Bruno, A.; Jamaludin, N. F.; Lie, S.; Mathews, N.; Dang, C. Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. J. Mater. Chem. C 2019, 7, 5028-5036.
[37]
Ma, C. Q.; Shen, D.; Ng, T. W.; Lo, M. F.; Lee, C. S. 2D perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 2018, 30, 1800710.
[38]
Zhang, C. C.; Wang, Z. K.; Li, M.; Liu, Z. Y.; Yang, J. E.; Yang, Y. G.; Gao, X. Y.; Ma, H. Electric-field assisted perovskite crystallization for high-performance solar cells. J. Mater. Chem. A 2018, 6, 1161-1170.
[39]
Yang, D.; Yang, R. X.; Wang, K.; Wu, C. C.; Zhu, X. J.; Feng, J. S.; Ren, X. D.; Fang, G. J.; Priya, S.; Liu, S. Z. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 2018, 9, 3239.
[40]
Jiang, J. X.; Jin, Z. W.; Gao, F.; Sun, J.; Wang, Q.; Liu, S. Z. CsPbCl3-driven low-trap-density perovskite grain growth for > 20% solar cell efficiency. Adv. Sci. 2018, 5, 1800474.
[41]
Wang, Q. Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 2018, 122, 4822-4827.
[42]
Liu, L. Y.; Wu, Y. G.; Li, M. Y.; Zong, X. P.; Sun, Z.; Liang, M.; Xue, S. Thieno[3, 2-b] indole-based hole transporting materials for perovskite solar cells with photovoltages exceeding 1.11 V. Chem. Commun. 2018, 54, 14025-14028.
[43]
Cai, F. L.; Yan, Y.; Yao, J. X.; Wang, P.; Wang, H.; Gurney, R. S.; Liu, D.; Wang, T. Ionic Additive engineering toward high-efficiency perovskite solar cells with reduced grain boundaries and trap density. Adv. Funct. Mater. 2018, 28, 1801985.
[44]
Gottesman, R.; Lopez-Varo, P.; Gouda, L.; Jimenez-Tejada, J. A.; Hu, J. G.; Tirosh, S.; Zaban, A.; Bisquert, J. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem 2016, 1, 776-789.
[45]
Kesavan, A. V.; Rao, A. D.; Ramamurthy, P. C. Interface electrode morphology effect on carrier concentration and trap defect density in an organic photovoltaic device. ACS Appl. Mater. Interfaces 2017, 9, 28774-28784.
[46]
Lin, Y. Z.; Shen, L.; Dai, J.; Deng, Y. H.; Wu, Y.; Bai, Y.; Zheng, X. P.; Wang, J. Y.; Fang, Y. J.; Wei, H. T. et al. π-conjugated Lewis base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 2017, 29, 1604545.
[47]
Carr, J. A.; Chaudhary, S. The identification, characterization and mitigation of defect states in organic photovoltaic devices: A review and outlook. Energy Environ. Sci. 2013, 6, 3414-3438.
[48]
Chen, G. S.; Feng, J. G.; Gao, H. F.; Zhao, Y. J.; Pi, Y. Y.; Jiang, X. Y.; Wu, Y. C.; Jiang, L. Stable α-CsPbI3 perovskite nanowire arrays with preferential crystallographic orientation for highly sensitive photodetectors. Adv. Funct. Mater. 2019, 29, 1808741.
[49]
Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752-1759.
Nano Research
Pages 2203-2208
Cite this article:
Li X, Wang K, Lgbari F, et al. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020, 13(8): 2203-2208. https://doi.org/10.1007/s12274-020-2836-3
Topics:

774

Views

38

Crossref

N/A

Web of Science

39

Scopus

4

CSCD

Altmetrics

Received: 04 February 2020
Revised: 23 April 2020
Accepted: 27 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return