AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes

Jianxi Ke1,2,3Shan Lu1,3,4( )Zhuo Li1Xiaoying Shang1Xingjun Li1Renfu Li1Datao Tu1,4Zhuo Chen1Xueyuan Chen1,2,3,4( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
University of Chinese Academy of Sciences, Beijing 100049, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Abstract

Multiplexed intracellular detection is desirable in biomedical sciences for its higher efficiency and accuracy compared to the single-analyte detection. However, it is very challenging to construct nanoprobes that possess multiple fluorescent signals to recognize the different intracellular species synchronously. Herein, we proposed a novel dual-excitation/dual-emission upconversion strategy for multiplexed detection through the design of upconversion nanoparticles (UCNP) loaded with two dyes for sensitization and quenching of the upconversion luminescence (UCL), respectively. Based on the two independent energy transfer processes of near-infrared (NIR) dye IR845 to UCNP and UCNP to visible dye PAPS-Zn, ClO- and Zn2+ were simultaneously detected with a limit of detection (LOD) of 41.4 and 10.5 nM, respectively. By utilizing a purpose-built 830/980 nm dual-laser confocal microscope, both intrinsic and exogenous ClO- and Zn2+ in live MCF-7 cells have been accurately quantified. Such dual-excitation/dual-emission ratiometric UCL detection mode enables not only monitoring multiple intracellular analytes but also eliminating the detection deviation caused by inhomogeneous probe distribution in cells. Through modulation of NIR dye and visible dye with other reactive groups, the nanoprobes can be extended to analyze various intracellular species, which provides a promising tool to study the biological activities in live cells and diagnose diseases.

Electronic Supplementary Material

Download File(s)
12274_2020_2837_MOESM1_ESM.pdf (2.5 MB)

References

[1]
Kolanowski, J. L.; Liu, F.; New, E. J. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem. Soc. Rev. 2018, 47, 195-208.
[2]
Fan, Y.; Wang, S. F.; Zhang, F. Optical multiplexed bioassays for improved biomedical diagnostics. Angew. Chem., Int. Ed. 2019, 58, 13208-13219.
[3]
Leng, Y.; Sun, K.; Chen, X. Y.; Li, W. W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 2015, 44, 5552-5595.
[4]
Jia, P. P.; Jiang, S. T.; Xu, L. Small-molecule bifunctional fluorescent probes for the differential detection of multiple guests. Curr. Org. Synth. 2019, 16, 485-497.
[5]
Zhou, W. J.; Liang, W. B.; Li, D. X.; Yuan, R.; Xiang, Y. Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells. Biosens. Bioelectron. 2016, 85, 573-579.
[6]
Mimitou, E. P.; Cheng, A.; Montalbano, A.; Hao, S.; Stoeckius, M.; Legut, M.; Roush, T.; Herrera, A.; Papalexi, E.; Ouyang, Z. Q. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 2019, 16, 409-412.
[7]
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
[8]
Gu, Z. J.; Yan, L.; Tian, G.; Li, S. J.; Chai, Z. F.; Zhao, Y. L. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 2013, 25, 3758-3779.
[9]
Zhao, L. Z.; Peng, J. J.; Huang, Q.; Li, C. Y.; Chen, M.; Sun, Y.; Lin, Q. N.; Zhu, L. Y.; Li, F. Y. Near-infrared photoregulated drug release in living tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater. 2014, 24, 363-371.
[10]
Zheng, W.; Huang, P.; Tu, D. T.; Ma, E.; Zhu, H. M.; Chen, X. Y. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379-1415.
[11]
Li, X. M.; Zhang, F.; Zhao, D. Y. Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. 2015, 44, 1346-1378.
[12]
Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater. 2019, 62, 1071-1086.
[13]
Xu, J. T.; Yang, P. P.; Sun, M. D.; Bi, H. T.; Liu, B.; Yang, D.; Gai, S. L.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.
[14]
Liu, J.; Bu, W. B.; Pan, L. M.; Shi, J. L. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem., Int. Ed. 2013, 52, 4375-4379.
[15]
Gu, B.; Zhang, Q. C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci. 2018, 5, 1700609.
[16]
Li, Z. H.; Yuan, H.; Yuan, W.; Su, Q. Q.; Li, F. Y. Upconversion nanoprobes for biodetections. Coord. Chem. Rev. 2018, 354, 155-168.
[17]
Peng, J. J.; Xu, W.; Teoh, C. L.; Han, S. Y.; Kim, B.; Samanta, A.; Er, J. C.; Wang, L.; Yuan, L.; Liu, X. G. et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 2015, 137, 2336-2342.
[18]
Zhou, Y.; Chen, W. Q.; Zhu, J. X.; Pei, W. B.; Wang, C. Y.; Huang, L.; Yao, C.; Yan, Q. Y.; Huang, W.; Loo, J. S. C. et al. Inorganic-organic hybrid nanoprobe for NIR-excited imaging of hydrogen sulfide in cell cultures and inflammation in a mouse model. Small 2014, 10, 4874-4885.
[19]
Hu, J. S.; Wang, R. N.; Fan, R. R.; Huang, Z. H.; Liu, Y. X.; Guo, G.; Fu, H. Enhanced luminescence in Yb3+ doped core-shell upconversion nanoparticles for sensitive doxorubicin detection. J. Lumin. 2020, 217, 116812.
[20]
Mou, X. M.; Wang, J. X.; Meng, X. F.; Liu, J. L.; Shi, L. Y.; Sun, L. N. Multifunctional nanoprobe based on upconversion nanoparticles for luminescent sensing and magnetic resonance imaging. J. Lumin. 2017, 190, 16-22.
[21]
Ai, X. Z.; Wang, Z. M.; Cheong, H.; Wang, Y.; Zhang, R. C.; Lin, J.; Zheng, Y. J.; Gao, M. Y.; Xing, B. G. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat. Commun. 2019, 10, 1087.
[22]
Zheng, J. D.; Wu, Y. X.; Xing, D.; Zhang, T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019, 12, 931-938.
[23]
Ke, J. X.; Lu, S.; Shang, X. Y.; Liu, Y.; Guo, H. H.; You, W. W.; Li, X. J.; Xu, J.; Li, R. F.; Chen, Z. et al. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection. Adv. Sci. 2019, 6, 1901874.
[24]
Zhou, Y.; Pei, W. B.; Wang, C. Y.; Zhu, J. X.; Wu, J. S.; Yan, Q. Y.; Huang, L.; Huang, W.; Yao, C.; Loo, J. S. C. et al. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small 2014, 10, 3560-3567.
[25]
Chang, C. J.; Jaworski, J.; Nolan, E. M.; Sheng, M.; Lippard, S. J. A tautomeric zinc sensor for ratiometric fluorescence imaging: Application to nitric oxide-induced release of intracellular zinc. Proc. Natl. Acad. Sci. USA 2004, 101, 1129-1134.
[26]
Matsui, H.; Oyama, T. M.; Okano, Y.; Hashimoto, E.; Kawanai, T.; Oyama, Y. Low micromolar zinc exerts cytotoxic action under H2O2-induced oxidative stress: Excessive increase in intracellular Zn2+ concentration. Toxicology 2010, 276, 27-32.
[27]
Hu, P.; Wang, R.; Zhou, L.; Chen, L.; Wu, Q. S.; Han, M. Y.; El-Toni, A. M.; Zhao, D. Y.; Zhang, F. Near-infrared-activated upconversion nanoprobes for sensitive endogenous Zn2+ detection and selective on-demand photodynamic therapy. Anal. Chem. 2017, 89, 3492-3500.
[28]
You, W. W.; Tu, D. T.; Zheng, W.; Shang, X. Y.; Song, X. R.; Zhou, S. Y.; Liu, Y.; Li, R. F.; Chen, X. Y. Large-scale synthesis of uniform lanthanide-doped NaREF4 upconversion/downshifting nanoprobes for bioapplications. Nanoscale 2018, 10, 11477-11484.
[29]
Wu, X.; Lee, H.; Bilsel, O.; Zhang, Y. W.; Li, Z. J.; Chen, T.; Liu, Y.; Duan, C. Y.; Shen, J.; Punjabi, A. et al. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale 2015, 7, 18424-18428.
[30]
Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835-840.
[31]
Li, H. H.; Guan, L. M.; Zhang, X. J.; Yu, H.; Huang, D. J.; Sun, M. T.; Wang, S. H. A cyanine-based near-infrared fluorescent probe for highly sensitive and selective detection of hypochlorous acid and bioimaging. Talanta 2016, 161, 592-598.
[32]
Wang, J. Y.; Niu, Y. M.; Zhang, C.; Chen, Y. Q. A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction. Food Chem. 2018, 245, 337-345.
[33]
Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 2015, 15, 7400-7407.
[34]
Wu, X.; Zhang, Y. W.; Takle, K.; Bilsel, O.; Li, Z. J.; Lee, H.; Zhang, Z. J.; Li, D. S.; Fan, W.; Duan, C. Y. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060-1066.
[35]
Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725-10815.
Nano Research
Pages 1955-1961
Cite this article:
Ke J, Lu S, Li Z, et al. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Research, 2020, 13(7): 1955-1961. https://doi.org/10.1007/s12274-020-2837-2
Topics:
Part of a topical collection:

836

Views

30

Crossref

N/A

Web of Science

27

Scopus

5

CSCD

Altmetrics

Received: 15 January 2020
Revised: 24 April 2020
Accepted: 28 April 2020
Published: 22 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return