AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy

Tongxu Gu1Tong Chen1Liang Cheng2Xiang Li1( )Gaorong Han1Zhuang Liu2( )
State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Show Author Information

Graphical Abstract

Abstract

Electrodynamic therapy (EDT) is a conceptually new cancer treatment approach recently proposed by our group. During EDT, the electro-driven catalytic reaction would occur on the surface of platinum nanoparticles (PtNPs) to produce reactive oxygen species (ROS) under the direct current (DC) or square-wave alternating current (AC) electric field. To further extend the potential of EDT, we hereby designed mesoporous silica-based nanocomposites decorated with PtNPs and loaded with anticancer drug doxorubicin (DOX) for synergistic electrodynamic-chemotherapy. Such silica-based nanocomposites could enable homogenous killing of large-sized tumors (over 500 mm3) and realize remarkable tumor destruction efficacy at a relatively low quantity of electricity. To our best knowledge, this is the first study to combine EDT and chemotherapy to develop a synergetic nanoplatform, openning a new dimension for the design of other EDT-based anticancer strategies.

Electronic Supplementary Material

Download File(s)
12274_2020_2838_MOESM1_ESM.pdf (3.9 MB)

References

[1]
Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124.
[2]
Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881-4985.
[3]
Zhou, Z. J.; Song, J. B.; Nie, L. M.; Chen, X. Y. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597-6626.
[4]
Qian, X. Q.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials 2019, 211, 1-13.
[5]
Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380-387.
[6]
Gao, R.; Mei, X.; Yan, D. P.; Liang, R. Z.; Wei, M. Nano-photosensitizer based on layered double hydroxide and isophthalic acid for singlet oxygenation and photodynamic therapy. Nat. Commun. 2018, 9, 2798.
[7]
Qian, X. Q.; Zheng, Y. Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater. 2016, 28, 8097-8129.
[8]
Pan, X. T.; Bai, L. X.; Wang, H.; Wu, Q. Y.; Wang, H. Y.; Liu, S.; Xu, B. L.; Shi, X. H.; Liu, H. Y. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018, 30, 1800180.
[9]
Song, G. S.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996.
[10]
Takahashi, J.; Murakami, M.; Mori, T.; Iwahashi, H. Verification of radiodynamic therapy by medical linear accelerator using a mouse melanoma tumor model. Sci. Rep. 2018, 8, 2728.
[11]
Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem., Int. Ed. 2016, 55, 2101-2106.
[12]
Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902-4906.
[13]
dos Santos, A. F., de Almeida D. R. Q., Terra, L. F., Maurício, S., Baptista, M. S., Labriola, L. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat. 2019, 5, 1-20.
[14]
Wan, G. Y.; Liu, Y.; Chen, B. W.; Liu, Y. Y.; Wang, Y. S.; Zhang, N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol. Med. 2016, 13, 325-338.
[15]
Lu, K. D.; He, C. B.; Guo, N. N.; Chan, C.; Ni, K. Y.; Lan, G. X.; Tang, H. D.; Pelizzari, C.; Fu, Y. X.; Spiotto, M. T. et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[16]
Tang, Z. M.; Zhang, H. L.; Liu, Y. Y.; Ni, D. L.; Zhang, H.; Zhang, J. W.; Yao, Z. W.; He, M. Y.; Shi, J. L.; Bu, W. B. Antiferromagnetic pyrite as the tumor microenvironment-mediated nanoplatform for self-enhanced tumor imaging and therapy. Adv. Mater. 2017, 29, 1701683.
[17]
Gu, T. X.; Wang, Y.; Lu, Y. H.; Cheng, L.; Feng, L. Z.; Zhang, H.; Li, X.; Han, G. R.; Liu, Z. Platinum nanoparticles to enable electrodynamic therapy for effective cancer treatment. Adv. Mater. 2019, 31, 1806803.
[18]
Miklavčič, D.; Serša, G.; Kryžanowski, M.; Novakovič, S.; Bobanović, F.; Golouh, R.; Vodovnik, L. Tumor treatment by direct electric current-tumor temperature and pH, electrode material and configuration. Bioelectrochem. Bioenerget. 1993, 30, 209-220.
[19]
Cury, F. L.; Bhindi, B.; Rocha, J.; Scarlata, E.; El Jurdi, K.; Ladouceur, M.; Beauregard, S.; Vijh, A. K.; Taguchi, Y.; Chevalier, S. Electrochemical red-ox therapy of prostate cancer in nude mice. Bioelectrochemistry 2015, 104, 1-9.
[20]
Wang, J. J.; Wang, X. Y.; Lu, S. Y.; Hu, J.; Zhang, W.; Xu, L.; Gu, D. C.; Yang, W. T.; Tang, W.; Liu, F. J. et al. Integration of cascade delivery and tumor hypoxia modulating capacities in core-releasable satellite nanovehicles to enhance tumor chemotherapy. Biomaterials 2019, 223, 119465.
[21]
Zhang, W.; Guo, Z. Y.; Huang, D. Q.; Liu, Z. M.; Guo, X.; Zhong, H. Q. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555-8561.
[22]
Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592-599.
[23]
Xu, X. B.; Yang, G. M.; Xue, X. D.; Lu, H. W.; Wu, H.; Huang, Y.; Jing, D.; Xiao, W. W.; Tian, J. K.; Yao, W. et al. A polymer-free, biomimicry drug self-delivery system fabricated via a synergistic combination of bottom-up and top-down approaches. J. Mater. Chem. B 2018, 6, 7842-7853.
[24]
Zhang, J.; Liang, Z. B.; Zou, R. Q.; Zhao, Y. L. Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 2017, 29, 1701139.
[25]
Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.
[26]
Mai, W. X.; Meng, H. Mesoporous silica nanoparticles: A multifunctional nano therapeutic system. Integr. Biol. 2013, 5, 19-28.
[27]
Yao, X. M.; Chen, X. F.; He, C. L.; Chen, L.; Chen, X. S. Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. J. Mater. Chem. B 2015, 3, 4707-4714.
[28]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.
[29]
Guo, Z. D.; Chen, M.; Peng, C. Y.; Mo, S. G.; Shi, C. R.; Fu, G. F.; Wen, X. J.; Zhuang, R. Q.; Su, X. H.; Liu, T. et al. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials 2018, 179, 134-143.
[30]
Gu, T. X.; Cheng, L.; Gong, F.; Xu. J.; Li, X.; Han, G. R.; Liu, Z. Upconversion composite nanoparticles for tumor hypoxia modulation and enhanced near-infared-triggered photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 10, 15494-15503.
[31]
Nandiyanto, A. B. D.; Kim, S. G.; Iskandar, F.; Okuyama, K. Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous Mesoporous Mater. 2009, 120, 447-453.
[32]
Chen, X. F.; Mei, Q. S.; Yu, L.; Ge, H. W.; Yue, J.; Zhang, K.; Hayat, T.; Alsaedi, A.; Wang, S. H. Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl. Mater. Interfaces 2018, 10, 42225-42232.
[33]
Botelho da Silva, S.; Krolicka, M.; van den Broek, L. A. M.; Frissen, A. E.; Boeriu, C. G. Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydr. Polym. 2018, 186, 299-309.
[34]
Tsang, W. P.; Chau, S. P. Y.; Kong, S. K.; Fung, K. P.; Kwok, T. T. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003, 73, 2047-2058.
Nano Research
Pages 2209-2215
Cite this article:
Gu T, Chen T, Cheng L, et al. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Research, 2020, 13(8): 2209-2215. https://doi.org/10.1007/s12274-020-2838-1
Topics:

918

Views

53

Crossref

N/A

Web of Science

52

Scopus

1

CSCD

Altmetrics

Received: 23 December 2019
Revised: 27 April 2020
Accepted: 29 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return