AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals

Andrés Granados del Águila1,§T. Thu Ha Do1,§Jun Xing2Wen Jie Jee1Jacob B. Khurgin3Qihua Xiong1,4( )
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Key Laboratory of Eco-Chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

§ Andrés Granados del Águila and T. Thu Ha Do contributed equally to the work.

Show Author Information

Graphical Abstract

Abstract

Up-conversion photoluminescence (UCPL) refers to the elementary process where low-energy photons are converted into high-energy ones via consecutive interactions inside a medium. When additional energy is provided by internal thermal energy in the form of lattice vibrations (phonons), the process is called phonon-assisted UCPL. Here, we report the exceptionally large phonon-assisted energy gain of up to ~ 8kBT (kB is Boltzmann constant, T is temperature) on all-inorganic lead halide perovskite semiconductor colloidal nanocrystals that goes beyond the maximum capability of only harvesting optical phonon modes. By systematic optical study in combination with a statistical probability model, we explained the nontrivial phonon-assisted UCPL process in perovskites nanocrystals, where in addition to the strong electron-phonon (light-matter) coupling, other nonlinear processes such as phonon-phonon (matter-matter) interaction also effectively boost the up-conversion efficiency.

Electronic Supplementary Material

Download File(s)
12274_2020_2840_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Baluschev, S.; Miteva, T.; Yakutkin, V.; Nelles, G.; Yasuda, A.; Wegner, G. Up-conversion fluorescence: Noncoherent excitation by sunlight. Phys. Rev. Lett. 2006, 97, 143903.
[2]
Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936.
[3]
Boyd, R. W. Nonlinear Optics, 2nd ed.; Academic Press: Rochester, New York, 2003.
[4]
Wu, M. F.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulovíc, V.; Bawendi, M. G.; Baldo, M. A. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 2016, 10, 31-34.
[5]
Kaiser, W.; Garrett, C. G. B. Two-photon excitation in CaF2:Eu2+. Phys. Rev. Lett. 1961, 7, 229-231.
[6]
Shalav, A.; Richards, B. S.; Trupke, T.; Krämer, K. W.; Güdel, H. U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2005, 86, 013505.
[7]
Mauser, N.; Piatkowski, D.; Mancabelli, T.; Nyk, M.; Mackowski, S.; Hartschuh, A. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals. ACS Nano 2015, 9, 3617-3626.
[8]
Yamamoto, K.; Fuji, M.; Sowa, S.; Imakita, K.; Aoki, K. Upconversion luminescence of rare-earth-doped Y2O3 nanoparticle with metal nano-cap. J. Phys. Chem. C 2015, 119, 1175-1179.
[9]
Prasad, P. N.; Bhawalkar, J. D.; He, G. S.; Zhao, C. F.; Gvishi, R.; Ruland, G. E.; Zieba, J.; Cheng, P. C.; Pan, S. J. Two-photon upconverting dyes and applications. U.S. Patent 5,912,257, June 15, 1999.
[10]
Chen, G. Y.; Damasco, J.; Qiu, H. L.; Shao, W.; Ohulchanskyy, T. Y.; Valiev, R. R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. H. et al. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 2015, 15, 7400-7407.
[11]
Yang, H. R.; Han, C. M.; Zhu, X. J.; Liu, Y.; Zhang, K. Y.; Liu, S. J.; Zhao, Q.; Li, F. Y.; Huang, W. Upconversion luminescent chemodosimeter based on NIR organic dye for monitoring methylmercury in vivo. Adv. Funct. Mater. 2016, 26, 1945-1953.
[12]
Akizuki, N.; Aota, S.; Mouri, S.; Matsuda, K.; Miyauchi, Y. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat. Commun. 2015, 6, 8920.
[13]
Zhang, J.; Li, D. H.; Chen, R. J.; Xiong, Q. H. Laser cooling of a semiconductor by 40 Kelvin. Nature 2013, 493, 504-508.
[14]
Zhang, Q.; Liu, X. F.; Utama, M. I. B.; Xing, G. C.; Sum, T. C.; Xiong, Q. H. Phonon-assisted anti-Stokes lasing in ZnTe nanoribbons. Adv. Mater. 2016, 28, 276-283.
[15]
Wang, X. Y.; Yu, W. W.; Zhang, J. Y.; Aldana, J.; Peng, X. G.; Xiao, M. Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 2003, 68, 125318.
[16]
Chen, W.; Joly, A. G.; McCready, D. E. Upconversion luminescence from CdSe nanoparticles. J. Chem. Phys. 2005, 122, 224708.
[17]
Jakubek, Z. J.; DeVries, J.; Lin, S. Q.; Ripmeester, J.; Yu, K. Exciton recombination and upconverted photoluminescence in colloidal CdSe quantum dots. J. Phys. Chem. C 2008, 112, 8153-8158.
[18]
Deutsch, Z.; Neeman, L.; Oron, D. Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol. 2013, 8, 649-653.
[19]
Teitelboim, A.; Oron, D. Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures. ACS Nano 2016, 10, 446-452.
[20]
Ha, S. T.; Shen, C.; Zhang, J.; Xiong, Q. H. Laser cooling of organic-inorganic lead halide perovskites. Nat. Photonics 2016, 10, 115-121.
[21]
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[22]
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.
[23]
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.
[24]
Zhang, Q.; Ha, S. T.; Liu, X. F.; Sum, T. C.; Xiong, Q. H. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014, 14, 5995-6001.
[25]
Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 2014, 9, 687-692.
[26]
Shin, J.; Kim, M.; Jung, S.; Kim, C. S.; Park, J.; Song, A.; Chung, K. B.; Jin, S. H.; Lee, J. H.; Song M. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res. 2018, 11, 6283-6293.
[27]
Dagar, J; Castro-Hermosa, S.; Gasbarri, M.; Palma, A. L.; Cina, L.; Matteocci, F.; Calabrò, E.; Di Carlo, A.; Brown, T. M. Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Res. 2018, 11, 2669-2681.
[28]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[29]
Akkerman, Q. A.; D’innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276-10281.
[30]
Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887-13892.
[31]
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.
[32]
Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
[33]
Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349-2362.
[34]
García-Santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of volume scaling in auger recombination in CdSe/CdS heteronanocrystals: The role of the core-shell interface. Nano Lett. 2011, 11, 687-693.
[35]
Eilers, J.; van Hest, J.; Meijerink, A.; de Mello Donega, C. Unravelling the size and temperature dependence of exciton lifetimes in colloidal ZnSe quantum dots. J. Phys. Chem. C 2014, 118, 23313-23319.
[36]
Granados del Águila, A.; Groeneveld, E.; Maan, J. C.; de Mello Donegá, C.; Christianen, P. C. M. Effect of electron-hole overlap and exchange interaction on exciton radiative lifetimes of CdTe/CdSe heteronanocrystals. ACS Nano 2016, 10, 4102-4110.
[37]
Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 2003, 82, 2793-2795.
[38]
de Mello Donegá, C.; Bode, M; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.
[39]
Rakovich, Y. P.; Donegan, J. F.; Vasilevskiy, M. I.; Rogach, A. L. Anti-Stokes cooling in semiconductor nanocrystal quantum dots: A feasibility study. Phys. Status Solidi A 2009, 206, 2497-2509.
[40]
Sebastian, M.; Peters, J. A.; Stoumpos, C. C.; Im, J.; Kostina, S. S.; Liu, Z.; Kanatzidis, M. G.; Freeman, A. J.; Wessels, B. W. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys. Rev. B 2015, 92, 235210.
[41]
Li, J. M.; Yuan, X.; Jing, P. T.; Li, J.; Wei, M. B.; Hua, J.; Zhao, J. L.; Tian, L. H. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv. 2016, 6, 78311-78316.
[42]
Wei, K.; Xu, Z. J.; Chen, R. Z.; Zheng, X.; Cheng, X. A.; Jiang, T. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett. 2016, 41, 3821-3824.
[43]
Do, T. T. H.; Granados del Águila, A.; Cui, C.; Xing, J.; Ning, Z. J.; Xiong, Q. H. Optical study on intrinsic exciton states in high-quality CH3NH3PbBr3 single crystals. Phys. Rev. B 2017, 96, 075308.
[44]
Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Stacey, A.; McCallum, J.; Greentree, A. D.; Prawer, S. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 2009, 9, 3191-3195.
[45]
Xiong, Y. D.; Liu, C.; Wang, J.; Han, J. J.; Zhao, X. J. Near-infrared anti-Stokes photoluminescence of PbS QDs embedded in glasses. Opt. Express 2017, 25, 6874-6882.
[46]
Calistru, D. M.; Mihut, L.; Lefrant, S.; Baltog, I. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J. Appl. Phys. 1997, 82, 5391-5395.
[47]
Yaffe, O.; Guo, Y. S.; Tan, L. Z.; Egger, D. A.; Hull, T.; Stoumpos, C. C.; Zheng, F.; Heinz, T. F.; Kronik, L.; Kanatzidis, M. G. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 2017, 118, 136001.
[48]
Yang, J. F.; Wen, X. M.; Xia, H. Z.; Sheng, R.; Ma, Q. S.; Kim, J.; Tapping, P.; Harada, T.; Kee, T. W.; Huang, F. et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 2017, 8, 14120.
[49]
Hu, Y. Z.; Koch, S. W.; Lindberg, M.; Peyghambarian, N.; Pollock, E. L.; Abraham, F. F. Biexcitons in semiconductor quantum dots. Phys. Rev. Lett. 1990, 64, 1805-1807.
[50]
Yang, Y.; Ostrowski, D. P.; France, R. M.; Zhu, K.; van de Lagemaat, J.; Luther, J. M.; Beard, M. C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 2016, 10, 53-59.
[51]
Von der Linde, D.; Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 1979, 42, 1090-1093.
[52]
Zanato, D.; Balkan, N.; Ridley, B.; Hill, G.; Schaff, W. J. Hot electron cooling rates via the emission of LO-phonons in InN. Semicond. Sci. Technol. 2004, 19, 1024-1028.
[53]
Klimov, V. I.; McBranch, D. W. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 1998, 80, 4028-4031.
[54]
Acherman, M.; Bartko, A. P.; Hollingsworth, J. A.; Klimov, V. I. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods. Nat. Phys. 2006, 2, 557-561.
[55]
Gao, Y.; Talgorn, E.; Aerts, M.; Trinh, M. T.; Schins, J. M.; Houtepen, A. J.; Siebbeles, L. D. A. Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids. Nano Lett. 2011, 11, 5471-5476.
[56]
Maity, P.; Debnath, T.; Ghosh, H. N. Slow electron cooling dynamics mediated by electron-hole decoupling in highly luminescent CdSxSe1-x alloy quantum dots. J. Phys. Chem. C 2015, 119, 10785-10792.
[57]
Scamarcio, G.; Spagnolo, V.; Ventruti, G.; Lugará, M.; Righini, G. C. Size dependence of electron-LO-phonon coupling in semiconductor nanocrystals. Phys. Rev. B 1996, 53, R10489(R).
[58]
Zhang Q.; Liu, X. F.; Utama, M. I., B.; Zhang J.; de la Mata, M.; Arbiol, J.; Lu, Y. H.; Sum, T. C.; Xiong, Q. H. Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett. 2012, 12, 6320-6427.
[59]
Chen, J.; Morrow, D. J.; Fu, Y. P.; Zheng, W. H.; Zhao, Y. Z.; Dang, L. N.; Stolt, M. J.; Kohler, D. D.; Wang, X. X.; Czech, K. J. et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525-13532.
[60]
Khurgin J. B. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration. Appl. Phys. Lett. 2014, 104, 221115.
[61]
Joly, A. G.; Chen, W.; McCready, D. E.; Malm, J. O.; Bovin, J. O. Upconversion luminescence of CdTe nanoparticles. Phys. Rev. B 2005, 71, 165304.
[62]
De Paula, A. M.; Barbosa, L. C.; Cruz, C. H. B.; Alves, O. L.; Sanjurjo, J. A.; Cesar, C. L. Quantum confinement effects on the optical phonons of CdTe quantum dots. Superlattice Microst. 1998, 23, 1103-1106.
[63]
Bruchhausen, A.; Fainstein, A.; Jusserand, B.; André, R. Resonant Raman scattering by CdTe quantum-well-confined optical phonons in a semiconductor microcavity. Phys. Rev. B 2006, 73, 085305.
[64]
Lange, H.; Artemyev, M.; Woggon, U.; Thomsen, C. Geometry dependence of the phonon modes in CdSe nanorods. Nanotechnology 2008, 20, 045705.
[65]
Lin, C.; Kelley, D. F.; Rico, M.; Kelley, A. M. The “surface optical” phonon in CdSe nanocrystals. ACS Nano 2014, 8, 3928-3938.
[66]
Granados del Águila, A.; Jha, B.; Pietra, F.; Groeneveld, E.; de Mello Donegá, C.; Maan, J. C.; Vanmaekelbergh, D.; Christianen, P. C. M. Observation of the full exciton and phonon fine structure in CdSe/CdS dot-in-rod heteronanocrystals. ACS Nano 2014, 8, 5921-5931.
[67]
Rawalekar, S.; Kaniyankandy, S.; Verma, S.; Ghosh, H. N. Ultrafast charge carrier relaxation and charge transfer dynamics of CdTe/CdS core-shell quantum dots as studied by femtosecond transient absorption spectroscopy. J. Phys. Chem. C 2010, 114, 1460-1466.
[68]
Eshlaghi, S.; Worthoff, W.; Wieck, A. D.; Suter, D. Luminescence upconversion in GaAs quantum wells. Phys. Rev. B 2008, 77, 245317.
[69]
Ye, S.; Zhao, M. J.; Yu, M. H.; Zhu, M.; Yan, W.; Song, J.; Qu, J. L. Mechanistic investigation of upconversion photoluminescence in all-inorganic perovskite CsPbBrI2 nanocrystals. J. Phys. Chem. C 2018, 122, 3152-3156.
[70]
Ma, X. M.; Pan, F.; Li, H. Q.; Shen, P.; Ma, C.; Zhang, L.; Niu, H. B.; Zhu, Y. Z.; Xu, S. J.; Ye, H. G. Mechanism of single-photon upconversion photoluminescence in all-inorganic perovskite nanocrystals: The role of self-trapped excitons. J. Phys. Chem. Lett. 2019, 10, 5989-5996.
[71]
Roman, B. J.; Sheldon, M. The role of mid-gap states in all-inorganic CsPbBr3 nanoparticle one photon up-conversion. Chem. Commun. 2018, 54, 6851-6854.
[72]
Shin, S.; Kaviany, M. Optical phonon production by upconversion: Heterojunction-transmitted versus native phonons. Phys. Rev. B 2015, 91, 165310.
[73]
Caretta, A.; Donker, M. C.; Perdok, D. W.; Abbaszadeh, D.; Polyakov, A. O.; Havenith, R. W. A.; Palstra, T. T. M.; van Loosdrecht, P. H. M. Measurement of the acoustic-to-optical phonon coupling in multicomponent systems. Phys. Rev. B 2015, 91, 054111.
[74]
Pisoni, A.; Jacimović, J.; Barišić, O. S.; Spina, M.; Gaál, R.; Forró, L.; Horváth, E. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 2014, 5, 2488-2492.
[75]
Yue, S. Y.; Zhang, X. L.; Qin, G. Z.; Yang, J. Y.; Hu, M. Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells. Phys. Rev. B 2016, 94, 115427.
[76]
Elbaz, G. A.; Ong, W. L.; Doud, E. A.; Kim, P.; Paley, D. W.; Roy, X.; Malen, J. A. Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites. Nano Lett. 2017, 17, 5734-5739.
[77]
Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications; Springer Science & Business Media: New York, 2005.
[78]
Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92-95.
Nano Research
Pages 1962-1969
Cite this article:
del Águila AG, Do TTH, Xing J, et al. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Research, 2020, 13(7): 1962-1969. https://doi.org/10.1007/s12274-020-2840-7
Topics:
Part of a topical collection:

754

Views

37

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 16 January 2020
Revised: 23 April 2020
Accepted: 29 April 2020
Published: 23 May 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return